
OPS-2000 Reference Manual

www.siliconvalleyone.com Page 1 of 171

OPS-2000™

Reference Manual

Version 2.1

Copyright (c) 1988-2012 by Silicon Valley One

P.O. Box 77782, San Francisco, California, 94107

WWW.SILICONVALLEYONE.COM

The United States of America

All Rights Reserved

OPS-2000 Reference Manual

www.siliconvalleyone.com Page 2 of 171

Table of Contents

Introduction .. 6

Manual Notation ... 7

Overview ... 8
NOTES ..9
OPS-2000 CODE COMMENTING ... 11
WORD ... 12
TYPES ... 13

Fundamental ... 13
Derived ... 13

EXPRESSIONS .. 14
STATEMENTS ... 15
FUNCTIONS .. 16
CLASSES ... 17
WORKING KNOWLEDGE .. 19

Working Memory .. 19

Overview ... 19

Fact Working Memory ... 19

Representation ... 19

Overview ... 19

Free Form ... 20

Relation Facts ... 21

Goals ... 22

Class Objects .. 23

Certainty Factors .. 24

"C" Interface ... 25

Class ... 26
DERIVED .. 28

Member Name Qualifier ... 30
DATA MEMBERS ... 33

Private .. 33
Public .. 33
Static ... 34
Visibility ... 34

FUNCTION MEMBERS .. 35

Operations .. 36

Virtual .. 37

Friends .. 40
Constructor ... 41

Member Initializer List ... 42

Destructor ... 43

Constants ... 44
INTEGER .. 44
REAL ... 44
STRING .. 45

 System Functions

 3

Functions ... 46

defchannels .. 47

defeo ... 48
INFERENCE ENGINE .. 50
RULE SETS .. 50
CHANNELS ... 50

deffacts ... 51

defgoals .. 52

defrelation .. 53

defrs .. 55

defrule ... 56
OVERVIEW ... 57
FORWARD CHAINING .. 58

Confidence Factor .. 59
Minimum ... 59
Maximum .. 59
Fuzzy .. 60

Statistically Dependent ... 61

Statistically Independent ... 61

BACKWARD CHAINING ... 62
Type 1: subgoal list .. 62
Type 2: pattern logic ... 64
Type 3: subgoal list and pattern logic ... 64
Search .. 64

TYPE SUMMARY ... 65
PATTERNS ... 66

Free-Form ... 66
Relation .. 66
Class ... 66

Attributes ... 66

Pattern Element .. 67

Predicate ... 67

Wildcard .. 69

Single Field .. 69

Multiple Field ... 69

Variables ... 70

Segment .. 71

Match ... 71

Operators .. 71

Negation .. 71

Disjunctive ... 72

Conjunctive .. 72

 System Functions

 4

Test ... 73

PRIORITY ... 74
LOGICAL OPERATORS ... 75

And ... 75
Or .. 76
Test ... 76
Not .. 76
DeMorgan's Theorem ... 78

Expressions ... 79
OPERATORS ... 79

Assignment Operators .. 79
Arithmetic Operators .. 80
Bit Operators .. 80
Relational Operators .. 80
Equality Operators .. 81
Logical Operators ... 81
Conditional Operator .. 81
Comma Operator .. 82
Address Operators ... 82
Class Operators.. 82
Precedence and Associativity .. 83

NEW .. 85
DELETE .. 86

Functions ... 87

Globals ... 88

Inference Engine Function .. 89
LIBRARY... 89

Statement ... 91
ACTIVATE ... 91
ASSERT ... 91
BREAK ... 92
COMPOUND .. 92
CONTINUE .. 92
DEACTIVATE ... 93
DO-WHILE ... 93
EXCISE .. 93
EXPRESSION .. 93
FOR ... 93
IF-ELSE ... 94
NULL ... 94
PRINTOUT .. 94
REASSERT ... 95
RECEIVE .. 95
REFUTE ... 95
RETRACT ... 96
RETURN ... 97
SEND ... 98
STOP ... 98
SWITCH ... 98
WHILE ... 99

 System Functions

 5

Typedef ... 100

Variable ... 101

OPS-2000 System Functions .. 102
SYSTEM FUNCTIONS ... 102
OPERATING ENVIRONMENT ... 102
STANDARD INPUT/OUTPUT .. 128
FILE INPUT/OUTPUT .. 131
STRING .. 133
INFERENCE ENGINE .. 137
EMBEDDABLE ... 147
MATH... 166

 System Functions

 6

Introduction

This reference manual is divided into two sections. The first section provides an overview of the OPS-2000 system.
The second provides an alphabetic reference to the OPS-2000 system. This manual serves as a reference, and is not
intended to be a tutorial. The OPS-2000 User's Manual should be read as an introduction to OPS-2000. A description
of the predefined system functions appears at the end of this manual.

 System Functions

 7

Manual Notation

This manual uses various types of notation. Symbols are used to describe a command's syntax. The table given
below describes these symbols.

Symbol Use

symbol The bold font indicates a literal value that should be entered actually as it
appears.

< item > Angle brackets indicates that you must enter the enclosed item's value.

symbol | symbol The pipe '|' serves as an associative "or" operation. This indicates that exactly
one of the or's values is to be entered.

[symbol] Square brackets indicates that the symbol's value is optional.

symbol* The asterisk indicates that zero or more of the symbol's values is to be
entered.

symbol+ The plus indicates that one or more of the symbol's values is to be entered.

 System Functions

 8

Overview

This section provides an overview of some of the more general OPS-2000 concepts. The reference section should be
referred to for more specific information.

The C++ interpreter is called the "Small C++ Interpreter" because currently it is not a full implementation of the C++
programming language. Future releases will enhance and improve this interpreter's capabilities. The interpreter
supports: function prototypes, function name overloading, function parameter ellipsis, typedef, recursion, classes,
friends, virtual, constructors, delete, destructors, for, while, do-while, if-else, switch, case, default, auto, static, integer
(int), real (double), char, arrays, pointers, and nearly all of the operators with their associated precedence.

The OPS-2000 knowledge reasoning system supports: rules, rule sets, expert objects, multitasking, interobject
communication, forward chaining (fuzzy/confidence factors/normal), backward chaining, inference engine control
library, and three types of patterns (class/free-form/relation).

Some of OPS-2000's innovative features are:

Feature Innovation

C++ class patterns  Can be nested to any depth.

 Attributes can be any legal C++ member expression.

Rule  Forward and backward chaining.

 Threshold functions

 Fuzzy inferencing technique

 Confidence factors

 A rule's action section is a special type of C++ block.

Rule Set  Rule names are local to their enclosing rule set.

 Has its own local C++ environment.

 Dynamic runtime priority capability.

 Has an associated state (active/inactive).

Expert Objects  A knowledge source composed of one or more rule sets.

 Localized inference engine algorithm.

 Has its own local C++ environment.

 Rule set names are local to their enclosing object.

 Interobject communication channels.

Parallelism The definition of OPS-2000 will provide for future parallel processor versions. The OPS-
2000 rule-based language is inherently parallel. This enables OPS-2000 code written for
sequential architectures to be ported to parallel architectures with few, if any, code
modifications. The internals of OPS-2000 have been designed to run on all types of
computer architectures.

 System Functions

 9

Notes

All keywords are lower case. There are no reserved keywords.

Four types of constants are supported: integer, real, string, and symbol.

All vectors begin with index 0.

The empty type specifier void is not directly supported in this current release. However there is a builtin typedef that
defines void to be of type int.

All functions must explicitly have their return types specified.

The most obvious differences between the small C++ interpreter and a normal "C++" compiler/interpreter are:
definitions can only be loaded once, there is currently no support for the "C++" preprocessor, typecasting isn't directly
supported, and the operator declaration is not supported.

The keyword class must proceed all declarations specifying a class. For example:

 class employee *x; //Proper OPS-2000 syntax.

 employee *x; //Not supported in this release.

In class member functions, the applicable class object can only be directly referenced using the this-> pointer. This
pointer refers to the object that called the operation.

A forward chaining rule's RHS, like a procedure, is a C++ compound statement. This block can include a special set
of statements applicable only to rules.

Memory addresses cannot be explicitly added or subtracted. A way to get the address of the 10th element of an array
is to use the unary operator '&' with the array operator. For example: &x[9].

 System Functions

 10

In the command line interpreter, string constants should not be manipulated in the manner shown below:

--> declare("char *ptr;")

--> ptr = "Hello World";

The last line should not be done for each statement is compiled, executed, and then completely destroyed. The
destruction of a statement includes any associated string constants. Thus the value pointed to by variable ptr has
been freed after the first statement was executed. However within a function or rule definition these statements are
correct.

 System Functions

 11

OPS-2000 Code Commenting

There are two methods of inserting comments into OPS-2000 source code.

Method 1: //

The double slash indicates to the compiler that everything from the // to the end of the line is to be ignored.

Method 2: /* ... */

This method allows multiple lines to be commented. Everything from the first /* to the first */ is ignored and treated as
one comment.

 System Functions

 12

Word

An OPS-2000 word is a sequence of characters that begins with a character in the set {a-z, A-Z}, with the remaining
characters in the set {a-z, A-Z, '_', 0-9}.

There are no reserved keywords. However one should refrain from using keywords as names (variable, type,
function, ...) since this may cause some unexpected results.

 System Functions

 13

Types

Fundamental

There are three primary data types: char, integer, and real which respectively are implemented as the "C"
language's char, int, and double. The first two types are used to represent integers, and the last to represent floating
point numbers. Type char is typically an 8 bit integer that can be implemented as either a signed or unsigned byte,
thus for general use it really only has 7 bits of positive significance. Type int is typically a 32 bit integer (16 bits for
IBM-PC versions). Lastly, type real is typically a 64 bit floating point number. A real number has the range 1.7E-308
to 1.7E+308 (15 digit precision).

All floating arithmetic is carried out in double. All integer arithmetic is carried out in int.

The rule based portion of OPS-2000 made it necessary to introduce a fourth data type called symbol. A symbol can
be any OPS-2000 word. A symbol can be used anywhere in the system. It is not emphasized as a primary data type
because it doesn't have a corresponding C++ fundamental type. However the small C++ interpreter fully supports this
type.

Derived

From the fundamental and user defined types, other types can be derived using the declaration operators: * (pointer)
and [] (vector). A pointer is the memory address of an object. A vector is a contiguous sequence of objects of a
particular type.

For example:

 integer v[12]; //Integer vector of length 12.

 v[0] = 1988; //Assignment to its 1st element

 v[11] = 1999; //Assignment to its 12th element

 real probability; //Real variable named "probability"

 real *p; //Pointer to a real.

 p = &probability; //Variable "p" now refers to

 //variable "probability".

In the last example the & operator takes the address of the value of the object to the right of it.

 real matrix[10][12]; //A 10x12 vector of reals.

 matrix[2]; //Refers to a vector of length 12.

 p = matrix[1]; //Variable "p" now refers to the

 //second row of matrix's object.

 System Functions

 14

Expressions

OPS-2000 has a host of operators that are explained in the reference section of this manual. These operators include:
unary, additive, multiplicative, relational, logical, conditional, assignment, and equality.

 System Functions

 15

Statements

OPS-2000 supports every C++ statement except the goto. These are if, if-else, while, do-while, for, return, switch,
case, break, continue, default, compound, and expression. It also has an additional set of statements that can be
used with the C++ statements in a rule's action section, these are activate, deactivate, assert, retract, refute, send,
receive, printout, stop, excise, and reassert.

The expression statement is the most commonly used statement, with the syntax:

 <expression>;

The compound statement is often referred to as a block. It is composed of a sequence of statements that can
optionally be preceded by variable declarations. Its syntax is:

 {

 [<declaration list>]

 [<statement list>]

 }

 System Functions

 16

Functions

A function is a named part of a program that can be invoked from other parts of the program. Its primary components
are: a return type, name, formal parameter specification, and a function body which is a compound statement. OPS-
2000, unlike C++, requires that all functions have their return types explicitly specified.

Below is an example function to raise an integer number to an integer power.

 /*

 * Power - the integer number x to the nth power.

 */

 integer Power(integer x, integer n)

 {

 integer i, value;

 value = 1;

 for (i = 1; i <= n; i++)

 value = value * x;

 return(value);

 } /*Power*/

In C++ a function name can be overloaded, meaning the function call is bound based on its actual number of
parameters and their respective types. Thus a function name can be used more than once provided there are no two
functions with the same name and parameter descriptions. To specify a function name as being overloaded, the C++
language has the overload function specifier. For example:

 overload Power;

Now the function name Power can be given another unique formal parameter specification.

 /*

 * Power -- The real number x to the nth power.

 */

 real Power(real x, integer n)

 {

 integer i;

 real value;

 value = 1.0;

 for (i = 0; i <= n; i = i + 1)

 value = value * x;

 return(value);

 } //Power

 System Functions

 17

Classes

Classes provide a vehicle for user defined types. They provide a means for data encapsulation and guaranteed data
initialization. A class definition consists of two specifications: the data needed to create an object of the type, and the
set of operations for manipulating objects of the type.

A class can inherit properties from a single base (parent) class. The class inheritance tree is acyclic, meaning a class
cannot be its own ancestor. A class with a base class is called a derived class.

There are two parts to a class's data specification: private and public. The private part specifies the data members
that can only be accessed by a set of class defined functions (operations). The public part specifies the data members
that can be manipulated by any function.

Using the this pointer, class functions can access the requesting object's data members. For example:

 /*

 * employee

 */

 class employee {

 //Private data member section

 integer security_level; //Private data member

 public:

 //Public data member section

 char name[120]; //Public data member

 integer id; //Public data member

 void Print(); //Function member

 };

 /*

 * Employee :: Print

 */

 void employee :: Print()

 {

 printf("Employee: %s\n", this->name);

 printf("Id: %d\n", this->id);

 return;

 } //Print

In a class definition, the position of a class function member specification doesn't affect how it is treated. There are no
private and public function members. These attributes only apply to data members. In addition, a class function
member name is inherently overloaded. Thus the overload declaration is not necessary for function member names.

The example given below shows a call to the Print operation defined for class employee.

 ...

 class employee snoopy; //Employee class object

 class employee *garfield; //Pointer to class object

 ... //Give garfield a value.

 System Functions

 18

 //Object snoopy requests that it be printed.

 snoopy.Print(); //Print out snoopy

 //Object pointed to by garfield requests that it be printed.

 garfield->Print(); //Print out garfield

 ...

Lastly, a class can have data members that are shared by all objects of its type. This is accomplished by prefixing the
data member with the keyword static. This is referred to as a static data member.

There are four general types of class functions: constructors, destructors, operations, and friends. The first two are
respectively used to create and destroy a class's objects. Operations are functions that can access the public and
private members of a class object, as the Print() function did above. A function can be declared as an operation for
exactly one class.

Friends are functions that are given permission to access a particular class's private members, but are not callable as
operations on the class. Consequently a function can be a friend of multiple classes, and also an operation for a
single class.

 System Functions

 19

Working Knowledge

Working Memory

Overview

The working memory stores the current state of knowledge during the problem-solving process. A working memory
element (WME) is an asserted data object. OPS-2000 has two types of working memories: fact and goal.

Fact Working Memory

The Fact Working Memory (FWM) is used to store facts. Facts can be of any data object type.

Goal Working Memory

The Goal Working Memory (GWM) is used to store goals. A goal can be either a relation or free-form fact. A goal
WME is either the product of a direct assert, or the product of a backward chaining rule.

Representation

Overview

OPS-2000 has four types of data representation: facts, relation facts, goals, and class objects. Knowledge is
processed only after it has been asserted into either the fact or goal knowledge bases (working memories). Once
asserted, it is then pattern matched to the appropriate patterns.

 System Functions

 20

Free Form

Free-form facts are arbitrary strings of data composed of integers, reals, and symbols. The idea behind a fact is to
have a data representation that closely matches its written (English, French, German, Spanish, ...) equivalent. A free
form fact has no system imposed constraints on its size or field types. For example:

 "A Zebra has black stripes"

 "The monkey is at position 22"

 "The automobile has gasoline"

 "There is a 0.33 chance that Gilbert will hit Houston"

 "Discovery has landed"

 System Functions

 21

Relation Facts

Relation facts are facts with predefined formats and properties. A relation fact's properties can be zero or more of the
following: reflexive, symmetric, and transitive. These properties are enforced by the system through the use of
system defined, relation specific, rule sets. Relations are defined using defrelation. For example:

 //Declare relation name and generic format.

 defrelation brother_of (?person1 ?person2) {

 //Declare the field types: required

 symbol person1, person2;

 //Declare the relation to be transitive: optional

 property = transitive;

 //Specify an interface: optional

 interface:

 //Specify two input formats, in addition to generic.

 input in1 = "?person1 is the brother of ?person2";

 input in2 = "?person1 and ?person2 are brothers";

 //Specify one output format, in addition to generic.

 output out1 = "brothers ?person1 ?person2";

 }

If the following two facts appeared alone in a knowledge base with the above relation, then the third fact would be
generated by the system.

 1: (brother_of dexter eugene)

 2: (brother_of eugene ricky)

 implies

 3: (brother_of dexter ricky)

The free_form() function sets whether or not, free-form facts and patterns are accepted by the compiler. If the free-
form facts flag is set to false, then a warning message will be issued each time a free-form fact or pattern is compiled
by the system. The system defaults to accepting free-form objects. However they are not recommended since they
are slower to process and more likely to be the source of errors (the compiler cannot check them for the correct
number of fields and field types). Free-form facts descend from the early LISP based expert system tools. Relation
facts are more of a procedural language approach to knowledge representation.

 System Functions

 22

Goals

Goals can either be of the free-form or relation data format. A goal can have one or more sets of subgoals. Subgoals
are generated by backward chaining rules. The firing of a backward chaining rule can create at most one subgoal
group. All asserted goals, regardless of their value, are entered directly into the GWM.

The purpose of a goal is to state a hypothesis that is to be proven or refuted.

A goal can be proven in two ways: subgoal group and pattern logic. If a subgoal group has each and every member
proven (retracted but not refuted), then its parent goal is proven. Pattern logic can prove a goal when a particular goal
matches a backward chaining rule that has pattern logic in its RHS. In this case when the pattern logic is satisfied
such that its bindings match those of the goal's LHS pattern match, then the matching goal is proven.

If a goal is proven, then it is retracted from the GWM. If a proven goal has no parent goal, then it is asserted into the
FWM.

If a goal is refuted then

1. It and all of its subgoals are retracted from the GWM.

2. If it is a member of a subgoal group then that group is refuted. If that subgoal group was the last subgoal group of
its parent goal, then the parent goal is refuted.

 System Functions

 23

Class Objects

Class objects are fully integrated into the knowledge reasoning and C++ interpreter environments. A class object can
be asserted into the FWM, but currently there is no support for class objects in the GWM. Class objects can have
pointers to other objects, as well as class object data members.

Within OPS-2000 rules, class objects can be treated like frames. Patterns can be matched against a class object and
any of its members that are of type class or pointer to class. There is no system limit on the nesting depth of class
patterns. Thus a data member of type class can be treated like a frame slot. For example:

 //First define an arbitrary class.

 class manager {

 symbol name;

 class employee *cook;

 class collector *irs;

 class file *records;

 };

 //The pattern "manager" can have three optionally nested

 //patterns. A class pattern matches based on the member

 //attribute specification which appears after the ^.

 {manager

 ^name Ronald

 ^cook {employee ^name Frank ^scale ?scale}

 ^irs {collector ^audit ?date}

 ^records {file ^total ?number}

 } //pattern manager

 System Functions

 24

Certainty Factors

A certainty factor refers to the confidence with which a knowledge base object is believed. Each working memory
element has a certainty factor value associated with it. This value defaults to 1.0, and it can be specified using any
legal value of type real. A working memory element's fuzziness refers to this same exact value. This value's
interpretation depends on whether it matches a pattern in a fuzzy or confidence-factor rule.

 System Functions

 25

"C" Interface

Function calls to compiled "C" functions can be made directly from OPS-2000. A compiled function can return either a
real, integer, char, or symbol value. Pointer values cannot be explicitly returned from a compiled function. Single
dimensional arrays of these four types can be passed as parameters to compiled functions. Symbols returned by
compiled functions are entered into the system's symbol table. A symbol returning compiled function actually returns a
character string which is entered into the system's symbol table. The table given below summarizes how C++ types
are passed to compiled functions.

 C++ type Passed "C" parameter type

===

 real double

 char char

 integer int

 symbol char *

 real * double *

 char * char *

 integer * int *

 symbol * char **

The ops_def_fctn() function is used to introduce a compiled function into the OPS-2000 environment. This function
call should be placed in the body of user_fctns(), which is executed by the system each time the system is started.

There is a special object file version of OPS-2000 provided with each release. This object file should be linked with
your compiled version of user_fctns() and any other associated compiled functions. This will create a user specific
version of OPS-2000.

 The ops_def_fctn() function prototype is:

 ops_def_fctn(<function name>, "<C++ function prototype>")

Below is an example of its use with the function printf().

 ops_def_fctn(printf, "integer printf(string ...)");

The ellipsis in the above function prototype indicates zero or more parameters.

Interpreter definitions can be given to the interpreter using the ops_declare() function. One of the primary motives
behind this particular function was to provide developers with the capability to customize their interpreter
environments.

Important Note:

The "C" environment's address space is independent of the OPS-2000 address space. Consequently, addresses
allocated by compiled "C" functions are local to the compiled environment, and addresses passed to the "C"
environment should NEVER be freed by the "C" environment.

 System Functions

 26

Class

Classes provide a means for new types to be created from existing types. In OPS-2000 a class definition has two
required function members: a destructor, and a zero parameter constructor. The below diagram gives an overview of
a C++ class definition.

 Class Definition

 ┌──┐

 │ │

 │ instance data members │

 │ ┌───┐ │

 │ │ public │ │

 │ ├───┤ │

 │ │ private │ │

 │ └───┘ │

 │ │

 │ shared (static) data members │

 │ ┌───┐ │

 │ │ public │ │

 │ ├───┤ │

 │ │ private │ │

 │ └───┘ │

 │ │

 │ member functions │

 │ ┌───┐ │

 │ │ operations │ │

 │ ├───┤ │

 │ │ virtual operations │ │

 │ ├───┤ │

 │ │ constructors │ │

 │ ├───┤ │

 │ │ destructors │ │

 │ └───┘ │

 │ │

 │ friends │

 │ ┌───┐ │

 │ │ functions │ │

 │ ├───┤ │

 │ │ classes │ │

 │ └───┘ │

 │ │

 └──┘

 System Functions

 27

The syntax and semantics of a class definition are given below.

Syntax

 class [<name>] [[public] : <base name>] {

 <member list>

 [public :

 <member list>

]

 }

The class name doesn't have to be specified if and only if it is a nested class definition. Named nested class
definitions are treated as global class definitions.

The public section is optional. A class where all members are public is identical to a struct declaration. OPS-2000
treats a struct as a special form of a class declaration. Its syntax is:

 struct [<name>] {

 <public member list>

 }

Data members appearing in the member list, preceding the second public keyword given in the above example, are
private members only accessible by member functions. Likewise, data members proceeding this keyword are
accessible by all functions.

 System Functions

 28

Derived

In a class definition a base class can optionally be specified. A class that includes the definition of a base class is
called a derived class. If the public keyword precedes the base class name, then all public data members of the
base class will also be public in the derived class.

The inheritance link for public base classes is infinite. This means that if the base class is always public, then the
publics of all of the classes in the chain are available to a class declared some depth in the chain. To access a public
that is from a base class or one of the classes in the chain, a class qualifier can be used.

A base class pointer can be made to point to an object of a derived class if and only if the base class is public in the
derived class. For example:

 class base *b;

 class derived : public base { int a; } d;

 class derived *d1;

 class derived2 : public derived { int b; } d2;

 class derived3 : base { int a; } d3;

 b = &d; //Legal

 d1 = &d2; //Legal

 b = &d2; //Legal

 b = &d3; //Illegal: nonpublic base class.

Due to the fact that OPS-2000 doesn't support explicit type casts, a nonstandard C++ assignment is supported. This
assignment allows a public base class pointer to be assigned to a derived class pointer. For example:

 d1 = b;

In standard C++ this would be:

 d1 = (class derived *)b;

This nonstandard assignment should only be used when the base pointer being assigned was the product of a
derived class's constructor. For example:

 b = &d;

 d1 = b;

 System Functions

 29

This is required to keep a list of objects of the same base class that includes members of derived classes. For
example:

class person {

 static class person *people;

 class person *next;

 person()

 {

 //Add the person to the list, regardless of what

 //derived type it is. To extract a person from this list

 //and assign it to its original class type such as

 //"dean" or "student" requires the above enhancement to

 //the C++ interpreter.

 this->next = this->people;

 this->people = this;

 return;

 } /*person*/

};

class dean : public person {

 ...

};

class student : public person {

 ...

};

 System Functions

 30

Member Name Qualifier

The member name qualifier provides a means to access a member operation or public data member declared in a
base class regardless of whether or not it has been redeclared in a derived class.

 <base class name> :: <member>

If the base class is public, then the search for the specified member starts at that class's definition. For example:

 class person {

 public:

 char b;

 talk();

 person(); ~person();

 };

 class employee : public person {

 public:

 char a;

 print();

 employee(); ~employee();

 };

 class manager : public employee {

 public:

 char a;

 print();

 talk();

 manager(); ~manager();

 };

 main()

 {

 class employee e;

 class manager m;

 e.a; //employee::a

 e.b; //person::b

 m.a; //manager::a

 m.employee::a; //employee::a

 m.print(); //manager::print()

 m.employee::print(); //employee::print()

 m.employee::talk(); //person::talk()

 m.talk(); //manager::talk()

 return;

 } /*main*/

 System Functions

 31

Description

A class member can either be a data variable declaration, function definition, or a function prototype. For example:

 class employee {

 //A couple of private data members

 integer a[10];

 integer size;

 //A couple of function members.

 integer Print(integer, integer);

 integer Print();

 //Function member with its definition

 integer Print(real x)

 {

 printf("%f\n", x);

 for (i = 0; i < this->size; i++)

 printf("%d\n", this->a[i]);

 return;

 } //Print

 public :

 //Nested class definition: no name

 class {

 integer a;

 integer b;

 public:

 } no_name;

 //Nested class definition: named

 class family {

 System Functions

 32

 integer total;

 public :

 integer debits;

 integer credits;

 } howdy;

 //A single public data member

 integer x;

 employee(); //Constructor

 ~employee(); //Destructor

 } //Class employee

 System Functions

 33

Data Members

Class operations access the data members of their associated class object via the pointer variable this. For each
class operation the system defines the variable this to be of type pointer to the operation's class. At runtime this
variable is bound by the system to the class object that is requesting the operation.

OPS-2000 currently doesn't support the C++ feature of allowing a class operation to access its associated class
object's members without the use of the this pointer.

Private

A class's private data members come from two sources. The first source are explicit data member declarations
appearing in a class definition's private section. The second source are public data members from a base class's
definition. A base class's public members default to being private members in a derived class.

Only a class's function members and function friends can access the class's private data members.

A private member of a base class cannot be made public or private in a derived class.

Public

A public member of a base class can selectively be made public in a derived class's definition by using the member
declaration:

 <base class name> :: <base class member name>;

To access a public that is from a base class or one of the classes on the inheritance chain, a class qualifier can be
used.

 <class> :: <name>

These can also be used for the current class.

 System Functions

 34

Static

Static class members are shared by all of the objects of the class. At runtime there is only one copy of a static data
member created. Static data members are specified by prefixing the data member declaration with the keyword
static. For example:

 class peanuts {

 static integer a; //shared

 integer b;

 public :

 real c;

 static char message[20]; //shared

 };

The data members "a" and "message" are physically shared by every class peanuts object.

Visibility

At compile time, checks are made to ensure that class object members are properly accessed. Thus each time the
compiler processes a class object member specification, it performs two checks.

1. Is the data member public?

2. If not (1), then is the function in which it appears declared to be a friend or member of the class?

If both (1) and (2) fail, then a compile-time error is flagged.

 System Functions

 35

Function Members

In every function of a particular class X, the pointer this is implicitly declared as class X *this.

A function member's position in a class definition has no affect on how the declaration is interpreted.

There is no information hiding for member functions.

Member function names can be overloaded without the explicit use of the overload declaration.

There are three types of function members: operations, constructors, and destructors.

 System Functions

 36

Operations

An operation is declared by specifying the operation's function prototype. When an operation's definition is declared
outside of a class definition, the operation's name must be preceded by a class qualifier which takes the form:

 <class name> :: <operation name>

 System Functions

 37

Virtual

Virtual operations allow a programmer to declare operations in a base class that can be redefined in each derived
class. The compiler will guarantee the correct correspondence between objects and their applicable operations. For
example:

 class employee {

 symbol name;

 integer id;

 /*

 *Print

 */

 virtual void Print()

 {

 printf("Name = %s; id = %d\n", this->name,

 this->id);

 } /*Print*/

 public :

 class employee *next;

 }; /*employee*/

 System Functions

 38

The keyword virtual indicates that the Print operation can have different definitions in derived classes, and that it is
the task of the compiler to find the appropriate version for each Print call. For example:

 //

 //manager

 //

 class manager : public employee {

 integer level;

 /*

 *Print

 */

 void Print()

 {

 printf("Level = %d\n", this->level);

 return;

 } /*Print*/

 }; /*manager*/

 //

 //Demo

 //

 void Demo()

 {

 class employee *list;

 list = new employee();

 list->next = new manager();

 list->Print(); //employee::Print()

 list = list->next;

 list->Print(); //manager::Print()

 return;

 } /*Demo*/

A virtual operation must be defined for the class in which it is first declared. In addition, a virtual function cannot be a
friend, constructor, or destructor function.

When a function member prototype of a derived class is identical to a virtual function member prototype of a base
class, then that function member becomes a virtual operation.

Each time a function member has the keyword virtual prefixing its declaration, its class becomes the base class for
all derived classes use of that virtual function member. Meaning a particular data object can have multiple identical
virtual operations that can be applied to it. Which virtual operation to apply is determined by which base class is acting
on it. For example:

 System Functions

 39

 class human {

 virtual void Print();

 };

 class employee : public human {

 void Print();

 };

 class manager : public employee {

 virtual void Print();

 };

 class ceo : public manager {

 void Print();

 };

 //

 //main

 //

 main()

 {

 class ceo charlie;

 class human *human;

 class manager *manager;

 human = &charlie;

 manager = &charlie;

 human->Print(); //Class employee's Print().

 manager->Print(); //Class ceo's Print().

 return;

 } /*main*/

 System Functions

 40

Friends

Friends are functions that have permission to access the private members of a class. A friend declaration doesn't
make a function a member of the class.

There are two ways to declare a function to be a friend of a class.

 Form 1: friend <function prototype> ;

This form makes a specific function a friend of the enclosing class definition.

 Form 2: friend class <class name> ;

This form makes all function members of a specified class, friends of the enclosing class definition.

Constructors and destructors cannot be friends.

 System Functions

 41

Constructor

Constructors and destructors are untyped function prototypes that have the same name as the class in which they
appear. A class definition can have one or more constructors. However, a class can only have one destructor. A
destructor is prefixed with a '~' and cannot have any declared formal parameters.

Syntax

usage

 <class name>(<unnamed parameter list>);

specification

 <class name>(<parameter list>)

 [: <member initializer list>]

 <compound statement/function body>

Description

A constructor is called by the system to construct a class object. It can only be called using the new operator.

Constructor rules:

1. It cannot be explicitly called (OPS-2000 specific).

2. It cannot have a declared return type.

3. It cannot have a return statement (not enforced).

4. It cannot be a class friend.

5. If a class has a constructor with no formal parameters, then that constructor is used for objects which are not
explicitly initialized. An example of this is in the declaration of arrays of class objects.

The calling order in which an object is constructed is:

1. Construct the base.

2. Construct the members of the derived.

3. Construct the derived.

 System Functions

 42

Member Initializer List

The member initializer list is used to give actual parameters for member class objects' constructors. In addition, the
base class constructor can have its parameters specified.

Syntax

 <member initializer> [, <member initializer>]

<member initializer> ::= [<member name>] (<parameter list>)

Description

A member initializer without a member name is used to initialize the base class. Each given member name must
correspond to a class member name of the class object (please note). Furthermore, constructors for each (argument
list type/class member type) must be declared.

An example is given below:

 class base {

 integer ct;

 base(integer in) { this->ct = in; }

 base() { ; }

 ~base() { ; }

 };

 class derived : base {

 derived();

 ~derived();

 derived(integer);

 class base b;

 class base d;

 };

 void derived :: ~derived() { ; }

 void derived :: derived() { ; }

 void derived :: derived(integer a)

 : (a + 1), b(a + 2), d(a + 10)

 {

 ;

 }

 System Functions

 43

Destructor

A member function of class X named ~X is called a destructor; it takes no arguments, and no return type can be
specified for it. A destructor's purpose is to destroy the values of type X immediately before the object containing them
is destroyed.

Syntax

 ~<class name>(<parameter list>);

Description

Destructor rules:

1. It cannot be explicitly called.

2. It cannot have a declared return type.

3. It cannot have a return statement (not enforced).

4. It cannot be a class friend.

The calling order in which an object is destroyed is:

1. Destroy the derived.

2. Destroy the members of the derived.

3. Destroy the base.

 System Functions

 44

Constants

OPS-2000 has four types of constants: integer, real, string, and symbol. Each of these is described below.

Integer

Integer constants come in four forms: decimal, hexadecimal, octal and character. Decimal constants refer to the way
you normally look at integers: 911, 928, 944, and 2000.

Hexadecimal constants are the base 16 equivalent of decimal constants. These constants have the prefixes "0x" and
"0X". The integers represented by the above decimal constants respectively have the hexadecimal forms 0x38f,
0x3a0, 0x3b0, and 0x7d0.

Octal constants are the base 8 equivalents of decimal constants. These constants have the prefix "0". The above
decimal constants are respectively represented by 01617, 01640, 01660, and 03720.

Character constants are eight bit integers which can either be signed or unsigned depending upon the architecture.
Thus for integer values, only the range 0 to 127 can be consistently represented. Character constants have three
forms: '\ddd', '\s' and 'l'. The "ddd" can be any three digit octal value. The "l" is a visible keyboard character. Lastly, the
"s" is a special escape character.

The escape characters are:

 '\b' backspace

 '\f' form feed

 '\n' new line

 '\r' carriage return

 '\t' tab

 '\v' vertical tab

 '\\' backslash

 '\'' single quote

 '\"' double quote

 '\0' integer value 0

Real

Real constants are used to represent floating point numbers. These constants must have exactly one floating point
and no spaces. This constant has an exponential form that is specified by using an "e" or "E": <real>[e | E
]<exponent>. The exponent is to the immediate right of the "e", and the floating number is to its immediate left. For
example:

 1.23 .23 1.23e10 1.23E10

 0.23 1.0 1.23e-7 1.23E-7

 System Functions

 45

String

String constants are character sequences enclosed in double quotes. For example:

 "Hello World!"

Every string has one more character than it actually appears to have. This extra character is used to terminate the
string and is the known as null character: '\0'. Note that '0' is not equal to '\0'. A string's type is a character vector of the
appropriate length. For example "Hello" is of type char[6]. The maximum string constant length is 127 characters
which includes the mandatory string termination character '\0'.

String constants are static definitions and should not be modified. For example:

 char *greeting;

 greeting = "Hello World!";

 greeting[0] = 'h';

The above assignment is illegal, but the compiler will not flag an error.

Symbol

A symbol constant is a hashed character string that the equality operators can operate upon. A symbol is passed to
compiled functions as a character string. It is delimited using the '\' character. For example:

 \hello\

 \this is a symbol\

The representation of this constant is similar to a string constant. However escape characters cannot be embedded
within a declared symbol constant.

 System Functions

 46

Functions

There are two ways to declare a function: usage and specification.

Usage

A function usage declaration is referred to as a function prototype, its purpose is to declare the function binding
definition which consists of a function name, return type, and parameter types. Its general form is:

 <return type> <name> (<parameter types: no variable names>);

Specification

A function specification is similar to a function prototype, except its parameters are named and the prototype's ending
';' is replaced by a function body definition which happens to be a compound statement. However this is just the
general form, for there are function specifications that can include information not specifiable with this syntax, such as
free store function specifications.

 System Functions

 47

defchannels

Channels are used to send messages between expert objects. A channel is a unidirectional path between two expert
objects. Only one expert object can send into a particular channel and only one can receive from it. This binding of
expert objects to channels is performed at compile-time.

Syntax

 defchannels <channel name> [, <channel name>]* ;

Description

Channel declarations cannot be nested within any other declaration.

Messages can only be sent and received from a rule's RHS. This is accomplished using the send and receive
statements.

The current channel implementation is similar to software events. The sender of a message doesn't wait for a
message to be received, for a message is sent by simply depositing it into a channel buffer. The receiver of a
message doesn't wait either, but rather it must continuously poll the input channel until a message arrives. If a
receiver requests a message when there are no messages, the returned input buffer will have the value of an empty
string which means its first byte is set to '\0'.

If a channel has no receiver, then the buffer will just collect messages until a receiver is defined or the buffer is reset.

If a channel has no sender, then the receive statement will act as though the sender has stopped placing new
messages into the buffer.

Over a channel's life-span it can have many different sending and receiving expert objects. However at any given
instance in time it can have at most one sender and receiver.

 System Functions

 48

defeo

An Expert Object (EO) is a knowledge source composed of zero or more rule sets with its own C++ environment. It
can communicate with other EO's through channels created using defchannels.

There are two main themes behind an expert object: allow for communicating knowledge sources, and give the
developer a way to partition the complexity of the knowledge reasoning system.

An EO's rule sets can be run in parallel.

Syntax

 defeo <name>

 {

 [ie = <function prototype> ;]

 [block declarations]*

 [<rule set declaration> |

 <deffacts declaration> |

 <defgoals declaration>]*

 }

An EO's declaration block is identical to that of a compound statement's. In terms of lexical scoping, the EO is treated
as its rule sets' parent block.

Description

An expert object is a knowledge source composed of the following:

1. An inference engine function (defaults).

2. One or more rule sets.

3. Primary Agenda (PA).

4. A Fact Working Memory (FWM).

5. A Goal Working Memory (GWM).

6. A local C++ environment.

7. Zero or more channels it can send messages to.

8. Zero or more channels it can receive messages from.

 System Functions

 49

The simplest expert object definition is:

//

//Simplest

//

defeo Simplest

{

 //

 //defrs Simplest

 //

 defrs Simplest

 {

 //

 //defrule Simplest

 //

 defrule Simplest

 {

 (?)

 =>

 ;

 }

 }

}

 System Functions

 50

Inference Engine

An EO's inference engine can be explicitly specified by using the inference engine declaration syntax given below.

 ie = <inference engine function prototype>;

This function must be declared with exactly two integer parameters, and it can only appear once within an expert
object's definition. For example:

 ie = integer local_ie(integer, integer);

The first parameter is the system's id for the expert object that called the function, this value is needed by the
inference engine control library. The second parameter is the number of steps the expert object was instructed to run,
this is the same value that is passed to the run() function, and it is the inference engine function's responsibility to
interpret this value.

If this declaration does not appear, then the system uses a default inference engine function which will fire and
remove at most "steps" number of activations. This default inference engine can be changed using the system
function ie_default().

Rule Sets

An EO is composed of one or more rule sets. These rule sets all act on the EO's working memories. Each rule set has
its own local agenda to handle its rules' activations. All of the rule sets can perform their pattern matching phase in
parallel, completely independent of each other. After each pattern matching cycle, the expert object orders its rule
sets in its primary agenda according to the activation at the front of each of their local agendas. This ordering does not
include rule sets that have empty agendas.

A rule set is placed into the primary agenda based on the following rules in descending importance.

1. Highest rule set priority.

2. Highest rule activation priority.

3. Most recent working memory element.

4. Most recent time stamp.

The default inference engine will fire and then remove the activation that appears at the front of the primary agenda.

Channels

 A channel is used to send messages between two EOs. This is similar to the concept of an Occam channel in that a
channel is unidirectional and it can only have one sender EO and one receiver EO. However an Occam channel
causes a sender to wait until a receiver is ready, and likewise a receiver must wait until a sender is ready. A sender
expert object sends a message and continues running regardless of whether or not the message has been received.
A receiver expert object must poll a channel until a message appears.

 System Functions

 51

deffacts

Deffacts is used to describe the initial state of an EO's FWM.

Syntax

 deffacts <name> = {

 <string constant>

 [, <string constant>]*

 }

This declaration can only appear within an EO definition.

Description

An EO can have zero or more of these declarations. The facts within a deffacts definition are asserted when an EO is
reset. An EO's FWM is always first initialized with the fact: "initial_fact".

 System Functions

 52

defgoals

Defgoals is used to describe the initial state of an EO's GWM.

Syntax

 defgoals <name> = {

 <string constant>

 [, <string constant>]*

 }

This declaration can only appear within an EO definition.

Description

An EO can have zero or more of these declarations. The goals within a defgoals definition are asserted when an EO
is reset. An EO's GWM is always first initialized with the goal: "initial_goal".

 System Functions

 53

defrelation

Relations are used to define a fact's format and properties. They are particularly useful in verifying that a system
excepts only predefined input formats. A system flag can be set so that only facts that match some relation's input
format are accepted [see free_form()], any other formats will generate compile-time and run-time warning
messages. Relation patterns take the form of the relation's generic format, which is:

 (<relation name> <fields>)

All of a relation's fact objects are compiled into this format.

Relations must be defined before they are used.

Syntax

 defrelation <relation name> ([?<field name>]*) {

 [priority = <integer constant> ;]

 [property = <relationship> [, <relationship>]* ;]*

 <field name declaration>*

 [interface :

 [<input | output> <format name> = <fact string> ;]*

]

 }

 <relationship> ::= transitive | reflexive | symmetric

This declaration cannot be nested within any other declaration.

Description

The field list appearing within parentheses is the relation's field list. The system automatically defines an input and
output format for the relation that matches the generic form. These are referred to as the generic input and output
formats.

User defined input/output formats can be directly specified in a relation's optional interface section.

An input format must use all of a relation's field variables exactly once.

Every OPS-2000 relation input format must be unique. A variable appearing within an input format is compared and
bound based solely on its type.

All field names must have a corresponding field declaration.

A relation pattern must take its relation's generic format.

A binary relation (two fields) can have one or more of the following properties: reflexive, transitive, and symmetric.
These properties are declared using the property declaration, and are applied using system defined rule set's. The
priority value of these rule sets defaults to zero. A relation's definition can explicitly specify a priority value using the
priority declaration.

 System Functions

 54

A data object that matches a relation's input format is automatically translated by the system into the relation's generic
format. Therefore all patterns that are intended to match a particular relation's objects, must be of the relation's
generic form. This does not mean that rule variables have to be used for each of a relation's field positions, but it does
mean that all fields must be specified with the correct field type. The compiler checks to make sure that all relation
patterns follow these rules.

There can be zero or more instances of a field variable in a relation's output format.

A relation's output format names can only appear after a match variable that is used within an OPS-2000 statement.
The following rules summarize the use of output formats.

1. An output format can be specified by appending a format suffix to the variable. Example: $x:out1, converts $x to
the string format specified by out1. The format suffix is looked up at runtime. If the format doesn't exist in the fact's
relation, then the suffix is ignored and (2) is applied.

2. If no relation format is specified, then the generic output format is used.

 System Functions

 55

defrs

This declaration is used to define a set of rules. This set of rules (rule set) can then be given a priority and also a
current state. A rule set can have zero or more rules with an agenda that is local to it (local agenda). In addition, a rule
set can have its own local variable declarations that must appear before any of its rules' definitions.

Syntax

defrs <name> {

 [priority = <integer constant> ;]

 [state = active | inactive ;]

 [block declarations]*

 <defrule declaration>+

 }

Description

A rule set's declaration section is identical to that of a compound statement's. In terms of lexical scoping, a rule set is
treated as the parent block of its rules' bodies.

The priority declaration sets the rule set's default priority. This priority value is used to position the rule set in the
primary agenda, and it can be dynamically changed at runtime (see activate).

The state declaration sets the rule set's default state. A rule set's state can either be active or inactive. An inactive
rule set doesn't appear in the primary agenda, and all of the assertions sent to it are placed into its input queue (no
pattern matching). When an inactive rule set becomes active, all of the assertions in its input queue are pattern
matched. When an active rule set becomes inactive, it is simply removed from the primary agenda.

Fact retractions are performed regardless of a rule set's state. This retraction may be as simple as removing the fact
from the input queue, or it may require a full retraction if the fact has already been pattern matched.

 System Functions

 56

defrule

General Syntax

 defrule <name> [<rule type specifiers>]

 {

 [summary = <string constant> ;]

 [priority = <integer constant> ;]

 <pattern variable declarations>

 Left Hand Side (LHS)

 [=> | <=]

 Right Hand Side (RHS)

 }

Description

The summary declaration is used to associate a string constant with a rule's compiled definition. At runtime this string
can be accessed by the inference engine function library. Thus an inference engine function can give a verbose
description of a rule, which is useful for tracing (explaining) an inference process. This value defaults to the empty
string.

The priority declaration gives a rule a static priority value that is accessible from the inference engine function library.
This value defaults to zero.

A pattern variable declaration can only be one of the following types: match, segment, or single field (integer, real,
symbol, char). All pattern variables are auto variables.

In a forward chaining rule, the LHS represents the rule's pattern logic, and the RHS is its actions. All patterns
appearing within the LHS logic default to being pattern matched to the FWM. If a pattern is to be matched to the GWM
then it must have a goal specifier around it:

 (goal <pattern>)

In a backward chaining rule, the LHS is a single goal pattern which is matched to the GWM, and the RHS can be a
subgoal list and/or pattern logic. This pattern logic is identical to a forward chaining rule's LHS pattern logic.

The assignment operator cannot be used within pattern logic or subgoal lists.

 System Functions

 57

Overview

OPS-2000 has both forward and backward chaining rules. There is only one type of backward chaining rule, but it has
three general formats. There are three types of forward chaining rules: normal form, confidence factor form, and fuzzy
form. All but the normal form can utilize a threshold activation function (expression).

The LHS represents the conditions that must be satisfied in order for the rule to become activated. The set of data
objects that cause a rule to become activated (instantiated) are referred to as the match set. When a rule becomes
activated it is placed into a data structure called an agenda and is now referred to as an activation or instantiation.
The set of agenda entries is referred to as a conflict set. A software module called the inference engine is
responsible for operations on the agenda such as the firing and removal of activations. The inference engine selects
an activation to be fired using an algorithm appropriately called the conflict resolution algorithm.

A threshold function (expression) is evaluated once the rule's logic has been satisfied, but before the satisfied rule is
placed into the agenda as an activation. If this function has a true (nonzero) value, then its activation is placed into the
agenda, otherwise the satisfied logic is ignored. This is summarized in the diagram given below.

 ┌─────────────────────┐ ┌─────────────────────┐

 │ rule │ │ match set │

 └──────────┬──────────┘ └──────────┬──────────┘

 │ │

 └─>─────>─┐ ┌─<─────<─┘

 │ │

 ┌────────────────┴───────┴────────────────┐

 │ Is there a rule threshold function? │

 └──────────┬───────────────────┬──────────┘

 │ yes │ no

 ┌─────┴─────┐ true ┌─────┴─────┐

 │ evaluate ├─────> │activation │

 └─────┬─────┘ └─────┬─────┘

 │ false │

 ┌─────┴─────┐ ┌─────┴─────┐

 │ ignore │ │ agenda │

 └───────────┘ └───────────┘

In rule types where the system computes a value based on its pattern logic, a special variable is automatically defined
to store this value, this variable is called the logic variable. The logic variable's name is ??, its type is real, and its
value defaults to 1.0.

 System Functions

 58

Forward Chaining

 //

 //Normal Form

 //

 defrule <name> [: fc]

 {

 <pattern variable declarations>

 <pattern logic>

 =>

 <compound statement>

 }

Description

Any variable type can be declared immediately after the => symbol. This is due to the fact that a forward chaining
rule's RHS is a compound statement with its delimiters being the => symbol and the rule's final closing brace.

The defrule declaration defaults to the normal forward-chaining form. When the rule's pattern logic becomes satisfied,
a rule activation is placed into the agenda. There are two other forward chaining rule forms: fuzzy and confidence
factor.

When a fuzzy or confidence factor rule is parsed, a special variable with the name ?? is defined for the rule's body. Its
type is real, and its value defaults to 1.0. This variable is set by the system to the value of the rule's LHS pattern logic.
This value is determined by the rule's definition. This variable should only be used in a rule's threshold expression and
RHS. While in the scope of the rule's LHS pattern logic, the variable takes on an undefined value.

A threshold expression can optionally be specified in the fuzzy (fz) and confidence factor (cf) rule types. This is
defined as a C++ expression and it can use global, rule set, expert object, and logic variables.

 System Functions

 59

Confidence Factor

 //

 //Confidence Factor

 //

 // mn --> min(c1, c2 ...)

 // mx --> max(c1, c2 ...)

 //

 defrule <name> : cf [: mn | mx] [:(<threshold expr>)]

 {

 <pattern variable declarations>

 <pattern logic>

 =>

 <compound statement>

 }

Description

Minimum

A confidence factor rule defaults to type mn. Variable ?? is set to the minimum confidence factor value of the match
set.

Maximum

Variable ?? is set to the maximum confidence factor value of the match set. The mx symbol is used to specify this
type.

 System Functions

 60

Fuzzy

 //

 //Fuzzy rule

 //

 // sd --> statistically dependent.

 // si --> statistically independent.

 //

 defrule <name> : fz [: sd | si] [: (<threshold expr>)]

 {

 <pattern variable declarations>

 <fuzzy pattern logic>

 =>

 <compound statement>

 }

Description

The fuzzy pattern logic can be any legal pattern logic. However the pattern logic operators and, or, and not take on
completely new meanings.

DeMorgan's theorem is not applied to a fuzzy rule's pattern logic. The logic structure is not altered in any way.

Regardless of the logic, each and every one of the rule's test and pattern conditions must be satisfied in order for the
rule to be satisfied.

Variable x is defined to be a data object matching a pattern condition: u(x) is x's degree of membership.

Variable y is the membership value of a slot specification.

 System Functions

 61

Statistically Dependent

A fuzzy rule defaults to sd.

Its rules are:

pattern conditions function

(<pattern condition>)

y = u(x)

(not (x))

y = 1 - u(x)

(and (x1) (x2) (x3))

y = min(u(x1), u(x2), u(x3))

(or (x1) (x2) (x3))

y = max(u(x1), u(x2), u(x3))

Statistically Independent

This is sometimes referred to as possibilistic logic.

Its rules are:

pattern conditions function

(<pattern condition>)

y = u(x)

(not (y))

y = 1 - u(y)

(and (y1) (y2) (y3))

y = u(y1) * u(y2) * u(y3)

(or (y1) (y2) (y3))

y = (u(y1) + u(y2) + u(y3)) –

 (u(y1) * u(y2) * u(y3))

 System Functions

 62

Backward Chaining

A new goal WME is never compared to the existing contents of the GWM. Therefore a goal with the same data value
can appear as often as it can be asserted. A goal object can have zero or more subgoal groups spawned from it.
These groups are created when a backward chaining rule with an associated subgoal list is fired. A goal object can be
proven by either a subgoal group being proven, or by a backward chaining rule's pattern logic being satisfied and
fired.

 defrule <name> : bc

 {

 <pattern variable declarations>

 <goal pattern>

 <=

 [<subgoal list>]

 - or -

 [<pattern logic>]

 - or -

 [<subgoal list> <=> <pattern logic>]

 - or -

 [<pattern logic> <=> <subgoal list>]

 }

Description

If the goal pattern is matched (LHS), then the RHS becomes activated. Only rule variables that are bound in the LHS
of a rule can be used in that rule's RHS. There are three possible types of RHSs.

Type 1: subgoal list

When a parent goal is matched, the subgoal specification list is asserted as a subgoal group, which when proven will
prove the validity of the parent goal. If any goals in the group are refuted, then the entire group is refuted, and if this
was the parent goal's last subgoal group, then the parent goal is refuted provided it hasn't matched any backward
chaining rules with pattern logic.

A subgoal list takes the form:

 ((<subgoal-1>) ... (<subgoal-n>))

A subgoal list must have at least one subgoal specification. A subgoal element must be of type symbol, integer, or
real, and it can be specified in one of the following formats:

1. constant/literal

2. Variable bound in a rule's LHS: normal, segment, and match.

3. (<expression>)

An example:

 System Functions

 63

 //

 //Backward

 //

 defrule Backward : bc

 {

 match goal;

 real x;

 segment s;

 $goal <- (employee ?x $?s)

 <=

 ((child1 ?x)

 (next $goal : format1 end)

 (again $?s ?x $goal 10 99.9))

 } //Backward

 System Functions

 64

Type 2: pattern logic

A backward chaining rule's pattern logic is interpreted exactly as if it were a normal-form forward-chaining rule's
pattern-logic.

If the goal pattern is matched such that all of the variable names it shares with the pattern logic have the same values,
then an activation is placed into the agenda such that when it fires, the corresponding goal object will be proven.
Consequently, the application of the "prove" is completely dependent upon when the rule is fired. In terms of control,
this is completely the opposite of how a subgoal list is applied, for in that case when a goal matches the rule's LHS,
an activation is placed into the agenda, and when fired, its subgoal list will be asserted as a subgoal group which
when proven or refuted will perform operations independent of the agenda. In type 1 the agenda serves as a starting
point, and in type 2 the agenda serves as a completion point.

When a goal matches a goal pattern, the system gives the goal an anonymous subgoal group for the rule's pattern
logic. Consequently, if a goal matches both a type (1) and type (2) rule, then the goal cannot be refuted by a subgoal
group since a pattern logic subgoal group exists for the life of the goal.

Type 3: subgoal list and pattern logic

This provides a mechanism to allow for a goal to be proven using simultaneously types (1) and (2). Its behavior
parallels that of two rules, one of type (1) and the other of type (2), both of which fire off the same goal pattern match.
If either the pattern logic or the subgoal list are proven, then the goal is proven.

Search

OPS-2000's backward chaining doesn't constrain the developer by using a fixed backward chaining search algorithm.
To understand how backward chaining works, one must first understand the basic algorithm deployed.

When a backward chaining rule fires, one of two things can occur:

1. If the activation was due to pattern logic, then the goal is proven.

2. If the activation was due to an associated subgoal list, then that subgoal list is atomically asserted into the GWM
as a subgoal group.

Since an entire subgoal list is asserted before control is given back to the inference engine, this creates a series of
breath-first activations based on the new subgoal group's members. However, since rule's are selected to be fired
based on the recency of their match set, then the last subgoal specified in a subgoal list will, assuming it is a member
of a match set and independent of any rule priorities, cause the next rule to be fired. If this firing asserts another
subgoal group, then the cycle continues to follow a depth-first search algorithm. This of course can be changed by
giving rules different priorities. For instance a rule that only has pattern logic on its RHS may be placed in a rule set
with a higher priority than other rule sets which have rules with subgoal lists. This would truncate any unnecessary
subgoal groups from being asserted.

 System Functions

 65

Type Summary

The below diagram summarizes the rule type hierarchy.

 ┌───────────────────┐

 │ rule │

 └──┬─────────────┬──┘

 │ │

 ┌───────┘ └───────┐

 │ │

 ┌─────────┴─────────┐ ┌─────────┴─────────┐

 │ backward chaining │ │ forward chaining │

 └─────────┬─────────┘ └─────────┬─────────┘

 ┌────┴────┐ │

 │ normal │ ┌──────────────┴────────────┐

 └─────────┘ │ │

 ┌─────────┴─────────┐ ┌────┴────┐

 │ threshold │ │ normal │

 └──┬─────────────┬──┘ └─────────┘

 │ │

 ┌───────┘ └───────┐

 │ │

 ┌─────────┴─────────┐ ┌─────────┴─────────┐

 │ confidence factor │ │ fuzzy │

 └──┬─────────────┬──┘ └──┬─────────────┬──┘

 │ │ │ │

 ┌────┴────┐ ┌────┴────┐ ┌────┴────┐ ┌────┴────┐

 │ mn │ │ mx │ │ si │ │ sd │

 └─────────┘ └─────────┘ └─────────┘ └─────────┘

 System Functions

 66

Patterns

There are three types of patterns: free-form fact, relation fact, and class.

Free-Form

A free form pattern is used to match a WME that is neither a class object nor a relation object.

Syntax

 (<pattern element>+)

Description

This pattern is satisfied once for each possible way its pattern elements can match.

Relation

A relation pattern is used to match a particular relation's working memory elements.

Syntax

 (<relation name> <pattern element>*)

The number of pattern elements and their associated types must match that of the relation's generic format.

Description

This pattern is satisfied once for each possible way its pattern elements can match.

Class

A class pattern is used to match a particular class's working memory elements.

Syntax

 { <class name> [^<member attribute> <pattern element> | <class pattern>]* }

Description

A class pattern can have zero or more attributes. If no attributes are specified, then the pattern matches all of the
class's working memory elements. Attributes do not have to appear in any particular order.

An attribute is treated as though it were nested within an operation of the pattern's class. Thus it can access the public
and private members of the pattern class exactly as though it were a class operation.

Attributes

The carat symbol ^ is used to prefix each class pattern member primary expression. The this pointer can optionally

 System Functions

 67

be prefixed to a primary expression. Therefore in a class pattern, ^<member> is equivalent to ^this-><member>. If
the member is of type class object, then a single '&' can be prefixed to the attribute. For example:

 class usa {

 class country nation;

 };

 {usa ^&this->nation {country ... } ... }

When a member attribute's value is of type class pointer, then a class pattern of the pointer's class type must appear
immediately after the member attribute specification. This nesting of class patterns can continue indefinitely. All
variable bindings apply across all nested patterns. Variable bindings occur from left to right. If at runtime a class
pointer evaluates to NULL, the pattern match fails.

Pattern Element

A pattern element is used to match a data element vector. This vector can be composed of zero or more contiguous
data elements. If the match is successful, then the next pattern element in the pattern is compared to the next data
element vector. This continues until either a pattern element has failed to match, or the pattern and/or data object's
elements have been depleted. If all of the specified data values have matched all of the pattern's elements, then the
pattern has successfully matched the data object.

The pattern element can be as simple as a constant (literal match) in which case it matches a data element vector of
size one. Some examples of simple free-form fact patterns are given below.

 pattern fact matches

===

(Urbana is in Illinois) (Urbana is in Illinois) yes

(vienna is in Austria) (Vienna is in Austria) no

(count from 1 to 10) (count from 1 to 10) yes

(count from 1 to 10) (count from 1.0 to 10) no

(count from 1 to 10) (count from 1 to 1.0e10) no

Predicate

The predicate element is used to test a data element for a particular attribute. The predicate can be a check for a
particular element type, or whether or not a data element is an even or odd integer.

Syntax

 :<predicate>

Defined predicates are:

 predicate description

==

 real matches a real

 symbol matches a symbol

 integer matches an integer

 number matches either a real or integer

 even matches an even integer

 odd matches an odd integer

 System Functions

 68

Examples

 pattern fact matches?

===

(:number is a number) (10 is a number) yes

(:number is a number) (11.0 is a number) yes

(:number is a number) (rocket is a number) no

(:even) (11) no

(:odd is odd) (10 is odd) no

(:even) (10) yes

(:symbol) (hello_earth) yes

(:symbol) (99.9) no

 System Functions

 69

Wildcard

Wildcards are used within patterns to match data elements independent of their types.

Single Field

A single field wildcard has two properties:

1. It matches a single data element.

2. It matches any type of data element.

Within patterns the symbol ? is used to represent this wildcard. When a C++ variable is used within a rule, its name
must have a ? prefix. A variable name appearing after this wildcard serves as a type qualifier. Given below are some
examples using free-form facts and patterns.

 pattern fact matches?

==

(count from ? to ?) (count from 1 to 3) yes

(count from ? to ?) (count from 1.0 to 3) yes

(? ? ? ?) (count from 1 to 3) no

(? ? ? ?) (Lisbon is in Portugal) yes

(? ? ? ? ?) (1 two 3.0 four 5) yes

Multiple Field

A multiple field wildcard is used to match zero or more contiguous data elements which are referred to as a segment.
Within patterns the symbol $? is used to represent this wildcard. This wildcard can only be used in free-form patterns.

 pattern fact matches?

==

(the ball $?) (the ball is red and blue) yes

(the ball $?) (the ball is round) yes

(the ball $?) (the ball) yes

(the ball $?) (the) no

($? $?) (the) yes, yes

The last pattern matches twice, for each wildcard takes its turn matching the data element. An efficient use of this
wildcard is to use it as a pattern's last element. However when embedded elsewhere in a rule, it should be used with
prudence.

This wildcard cannot be used with pattern elements that match a single data element.

 System Functions

 70

Variables

Variables are bound in a rule in descending order. Consequently, a rule's first pattern inherits no variable bindings.

Rule variables can be any legal C++ variable, and their declarations are identical to those of C++. However within the
scope of a rule, all OPS-2000 words are of type symbol. Therefore all C++ variable names used within a rule must be
prefixed with a '?'. The '?' is also the single field wildcard operator.

For example:

 /*

 *hello

 */

 defrule hello

 {

 integer a; //C++ variable declaration.

 (?a is an integer)

 =>

 ?a += 10;

 printf("This value of ?a is %d.\n", ?a);

 printf("This symbol value = %s.\n", hello);

 } /*hello*/

The table given below gives some examples of pattern matches using this type of variable.

integer a, b;

symbol x, y;

 pattern data object

==

(?x is the brother of ?y) (Dexter is the brother of Eugene)

 ?x = \Dexter\

 ?y = \Eugene\

(There are ?a dollars) (There are 1000 dollars)

 ?a = 1000

(arc ?a to ?b) (arc 11 to 1000)

 ?a = 11

 ?b = 1000

($? ?a $?) (primes are 11 17 23)

 ?a = 11 //Match one

 ?a = 17 //Match two

 ?a = 23 //Match three

 System Functions

 71

Segment

A segment variable is used to store a segment matched by the multiple field wildcard operator.

Segment variable rules:

1. In use, a segment variable name must be prefixed with the multiple field wildcard symbol $?.

2. A segment variable will match zero or more fact elements. Thus it represents the bound form of the multiple field
wildcard operator.

3. A segment variable cannot appear within a disjunctive term.

4. A segment variable can be used in three places: free-form patterns, assert statements, and printout statements.

Match

A match variable is used to store a data object that has matched a particular pattern condition. In use, variables of this
type are prefixed with the $ symbol.

There are two types of match variables: class and fact. The compiler, based on a variable's actual usage, binds one of
these types to the match variable's definition.

A match variable can only be bound to one match type throughout a rule's definition. This is due to the fact that a
match variable's type is created based on the type of the first pattern it is bound to within the text of a rule's definition.

A class match variable also has a particular C++ class it is bound to. Consequently, these variables can be treated as
though they were actually declared as pointers to their binding C++ class, which means that the member and pointer
operators can be used on them.

Any type of match variable can be used in assert, refute, retract, reassert, and printout statements. This is in
addition to any other defined uses.

Match variables can be used in test conditions, but not in pattern conditions.

Operators

There are three types of operators that can be used within a pattern: ~ (not), & (and), and | (or). The ~ has highest
precedence, followed next by the &, and then the |.

Negation

The negation operator is represented by the symbol ~, which means take the complement of the pattern element
match.

Syntax

 ~ <pattern element>

Description

A negation indicates to the system that if the element matches, then it fails, and likewise if it fails to match, then it
succeeds (complement of the normal pattern element match).

Within a pattern, a variable name cannot be negated more than once before it is bound in that same pattern (please
note). For example:

 (~?x ?x ~?x) //legal

 (~?x) //legal

 (~?x ~?x) //illegal

 System Functions

 72

 (~?x ~?x ?x) //illegal

 (?x ~?x ~?x) //legal

 (?x ~?x ?x ~?x) //legal

 (~?x ~?x | ?x) //illegal

 (~?x | ~?x ?x) //illegal

 (~?x | ?x ~?x) //legal

The last pattern is legal, but it is actually treated as though it were the pattern: (?x ~?x). This is because at runtime if a
variable has two negations before it has a successful binding, the pattern matching for that particular instance fails.
The last pattern can create two possible pattern matching instances, however one of them is guaranteed to always
fail.

If a variable is negated before it is bound in a pattern, then it must be bound in a previous pattern. For example:

 (... ?x ...)

 (~?x) //legal only if the above condition exists.

Disjunctive

The disjunctive operator is represented by the symbol | (pipe), which means each of its operands creates one
possible match for a particular data element.

Syntax

 <pattern element> [| <pattern element>]*

Description

All variables appearing within the disjunction must have been previously bound. A variable cannot be bound as an
element of a disjunctive term.

Segment variables cannot appear in disjunctive terms.

Order of evaluation is from left to right. All operands are always evaluated.

Example:

 (?x | ?y | ?z)

The above example will match a single fact element with the value of ?x or ?y or ?z. If all three variables have the
same value, then a matching fact element will match three times (please note).

Conjunctive

The conjunctive operator is represented by the symbol & (ampersand), which means everything in the conjunction
must match the particular data element vector.

Syntax

 <pattern element> [& <pattern element>]*

 System Functions

 73

Description

Order of evaluation is from left to right. Evaluation ceases when either the clause has ended, or a pattern element
doesn't match.

It is illegal to use rule variables of different fundamental types in the same conjunctive term.

It is illegal to use :<pred> with the multiple field wildcard.

Any unbound variables appearing in the conjunction are bound to the matching data element vector.

Example:

 (?x ?y ?x&?y)

The above example will match a three element fact object such that all three elements are identical. For example:

 (hello hello hello) //Matches

 (hello goodbye hello) //Doesn't match

Test

Intrapattern test.

Syntax

 :(<test expr>)

The test expression should have a result of type integer. Note that relation and logical operators have integer results.

Description

If the test expression evaluates to true (noninteger zero) then the term matches, otherwise it fails.

A test expression indicates to the OPS-2000 compiler that at a specific point in the matching of a data object to a
pattern, the test should evaluate to true. Consequently only the bindings occurring to the left of the test expression,
within the pattern, can be used within it. A test must appear in a conjunctive term that contains some nontest term.
This term can be a predicate.

Interpattern testing should be done using the pattern logic test condition.

Example:

 (?x ?y&:((?y == hello) || (?y == good_bye)))

If the test term appears within a class pattern, then the expression can directly access the members of the matching
class object via the this pointer.

 {employee ^name ?name&:(this->process(?name)) }

 (?x & :(?x > 1)) //Example of embedded test.

 System Functions

 74

Priority

The ordering of an activation in a rule set's local agenda is based on two criterion:

1. The rule's declared priority.

2. The match set with the most recent WME.

A rule's priority can be declared by placing a priority declaration in the rule's primary variable declaration section.
This section appears immediately after a rule's first opening brace.

 priority = <integer constant>;

For example:

 /*

 *PriorityExample

 */

 defrule PriorityExample

 {

 priority = 20;

 int a, b, c;

 (?a ?b ?c)

 =>

 printf("%d %d %d\n", ?a, ?b, ?c);

 return;

 } /*PriorityExample*/

 System Functions

 75

Logical Operators

There are three types of logical pattern operators: and, or, and not. These operators have operands that appear
using a postfix notation. The operands are referred to as slot specifications which can be any one of the following: a
pattern condition, a test condition, or any logical pattern operator.

General Syntax

 (<operator> <operand>+)

And

A logical and is satisfied only if each and every one its slot specifications are satisfied.

Syntax

 (and <slot specification>+)

Description

A logical and is satisfied only if each and every one its slot specifications are satisfied.

A rule's pattern logic always has an implicit logical and enclosing it. For example:

User Input Form OPS-2000 Internal Form+

/*

* America

*/

defrule America

{

 (initial_fact)

 (a land of dreamers)

 (count down 3 2 1)

=>

 assert(Dreamers);

} /*America*/

/*

* America

*/

defrule America

{

 (and (initial_fact)

 (a land of dreamers)

 (count down 3 2 1))

=>

 assert(Dreamers);

} /*America*/

 System Functions

 76

Or

The logical or is used to specify multiple slot specifications that can make a single slot specification satisfied.

Syntax

 (or <slot specification>+)

Description

The logical or is satisfied each time one of its slot specifications is satisfied (please note). This differs drastically from
the traditional procedural language's logical or where if any condition is true then the logical or is satisfied exactly
once. Here, if every slot specification is true, then the or is satisfied once for each of them.

Test

The rule test condition is used to test for values in a rule's pattern logic. This is a interpattern test.

Syntax

 (test (<expression>))

Description

If the expression evaluates to a nonzero value then the test condition is true.

If at compile time a test is proceeded by a logical not, then the logical not is replaced by the C++ unary not. For
example:

 (not (test (?x > ?y)))

 is replaced by

 (test (!(?x > ?y)))

Not

The logical not is used to check that a particular condition does not exist. If this condition is a pattern condition, then
the check is for the nonexistence of a particular data object pattern. If this condition is a test condition, then the check
is for the falsity of the test condition's expression.

Syntax

 (not <slot specification>)

Logical not can appear anywhere in a pattern logic expression and it must have exactly one operand.

Description

 System Functions

 77

At runtime the logical not is applied to test and pattern conditions. Therefore at compile time DeMorgan's Theorem is
applied to all pattern logic to simplify the logic so that only test and pattern conditions have a not appearing before
them.

A not pattern is satisfied if and only if no working memory elements exactly match the pattern. If a not has variables,
then each set of variables provides a way for the pattern to be satisfied. If given a variable set, the pattern doesn't
match any working memory elements, then the not is satisfied for this particular variable set.

All variables appearing within a not pattern must have been previously bound in another pattern condition.

 System Functions

 78

DeMorgan's Theorem

A summary of this theorem is given below in terms of slot specifications.

 (not (not <slot>))

 is

 <slot>

 (not (and <slot1> <slot2>))

 is

 (or (not <slot1>) (not <slot2>))

 (not (or <slot1> <slot2>))

 is

 (and (not <slot1>) (not <slot2>))

 System Functions

 79

Expressions

An expression consists of one or more operands with an operator. Note that an expression followed by a semicolon is
a statement.

Operand Notation:

 e - any expression

 v - any expression a value can be assigned to.

 prefixes:

 i - integer (int or char).

 a - arithmetic (int, char, double)

 p - pointer

 c - class

 cp - class pointer

Operators

Assignment Operators

Operator Usage Description

= v = e Assign the value of e to v.

+= av += ae av = av + ae

-= av -= ae av = av - ae

*= av *= ae av = av * ae

/= av /= ae av = av / ae

%= iv %= ie iv = iv % ie

<<= iv <<= ie iv = iv << ie

>>= iv >>= ie iv = iv >> ie

&= iv &= ie iv = iv & ie

|= iv |= ie iv = iv | ie

^= iv ^= ie iv = iv ^ ie

The value of v and e is only fetched once. For example in your code "v += e" is more efficient then "v = v + e", for in
the latter the value of v is determined twice, while in the former it is only done once.

 System Functions

 80

Arithmetic Operators

Operator Usage Description

+ ae1 + ae2 Sum of ae1 and ae2

- ae1 - ae2 Difference of ae1 and ae2

* ae1 * ae2 Product of ae1 and ae2

/ ae1 / ae2 Quotient of ae1 and ae2

% ie1 % ie2 Remainder of ie1 / ie2

+ + ae1 Positive ae1

- - ae1 Minus ae1

++ ++ iv1

iv1 ++

Increment by 1

Take value and then increment by 1

-- -- iv1

iv1 --

Decrement by 1

Take value and then decrement by 1

Bit Operators

Operator Usage Description

>> ie1 >> ie2 ie1 shifted right by ie2 bits

<< ie1 << ie2 ie1 shifted left by ie2 bits

& ie1 & ie2 Bitwise "and" of ie1 and ie2

| ie1 | ie2 Bitwise "or" of ie1 and ie2

^ ie1 ^ ie2 Bitwise exclusive "or" of ie1 and ie2

~ ~ie One's complement of ie

Relational Operators

Operator Usage Description

< ae1 < ae2 True if ae1 is less than ae2

<= ae1 <= ae2 True if ae1 is less than or equal ae2

> ae1 > ae2 True if ae1 is greater than ae2

>= ae1 >= ae2 True if ae1 is greater than or equal ae2

 System Functions

 81

Equality Operators

Operator Usage Description

== ae1 == ae2

pe1 == pe2

True if ae1 is equal to ae2

True if pe1 is equal to pe2

!= ae1 != ae2

pe1 != pe2

True if ae1 is not equal to ae2

True if pe1 is not equal to pe2

Logical Operators

Operator Usage Description

&& e1 && e2 True if e1 and e2 are nonzero.

Evaluation is from left to right, and the first
zero valued expression stops the
evaluation loop.

|| e1 || e2 True if e1 or e2 are nonzero.

Evaluation is from left to right, and the first
nonzero valued expression stops the
evaluation loop.

! !ae True if ae is false.

Conditional Operator

Operator Usage Description

?: ae ? e1 : e2

pe ? e1 : e2

If ae or pe is true, e1 is evaluated.

If ae or pe is false, e2 is evaluated.

e1 and e2 must both be of the same type.

 System Functions

 82

Comma Operator

Operator Usage Description

, e1 , e2 Sequentially evaluates e1 and then e2.

The value of the expression is that of e2's.
The comma is also used as a delimiter. To
use a comma operator in a function call
parameter, the parameter expression
must be enclosed in parenthesis. This also
applies to any other features of the
language that use a comma as a delimiter.

Examples

 function call: foo(1 + 1, (2 + 19, 91));

 assert statement: assert((1 + 1, 2 + 2), "OPS");

Address Operators

Operator Usage Description

& &ve Address of an expression that refers to an
object.

* * pe Contents of address pe.

[] pe[ie] A variable offset ie variables from the
address given by pe.

Class Operators

Operator Usage Description

. cv . cmem Member cmem of class cv.

-> cpe -> cmem Member cmem of class pointed to by cpe.

 System Functions

 83

Precedence and Associativity

Unary operators and assignment operators are right associative; all others are left associative. For example:

 a = b = c; means a = (b = c);

 a + b + c; means (a + b) + c;

The table given below summarizes precedence. Operator precedence decreases as the operator appears towards
the bottom of the table. The operator at the top of the table has the highest precedence. Operators with equal
precedence appear grouped in the same table row.

Operator Description

:: global qualifier

->

[]

()

member selection

subscripting

function call

~

!

++

++

--

--

-

+

&

*

new

delete

delete []

complement

unary not

pre-increment

post-increment

pre-decrement

post-decrement

unary minus

unary plus

address of

dereference

create (allocate)

destroy (de-allocate)

destroy vector

*

/

%

multiply

divide

modulo (remainder)

+

-

add

subtract

<<

>>

shift left

shift right

 System Functions

 84

Operator Description

<

<=

>

>=

less than

less than or equal

greater than

greater than or equal

==

!=

equal

not equal

& bitwise AND

^ bitwise exclusive OR (XOR)

| bitwise inclusive OR

&& logical AND

|| logical inclusive OR

? : conditional expression

=

+=

-=

*=

/=

%=

<<=

>>=

&=

|=

^=

simple assignment

add followed by assignment

subtract followed by assignment

multiply followed by assignment

divide followed by assignment

modulo followed by assignment

shift left followed by assignment

shift right followed by assignment

bitwise AND followed by assignment

bitwise OR followed by assignment

bitwise XOR followed by assignment

, comma expression

 System Functions

 85

New

The new free store operator is used to create dynamic objects. The lifetime of an object created by new is not
restricted to the scope in which it is created. The new operator returns a pointer to the object it created. A constructor
is always called on every class object created.

Syntax

This operator has three general forms.

Form 1:

 new (<type name>)

This form is used to create a single object of a particular type. If that object happens to be a class object, then the
respective class's no parameter constructor is used to initialize the object.

Examples:

 new (integer)

 new (class date *)

 new (class date)

Form 2:

The type specification is similar to that of form-1, except now zero or more vector dimensions can be specified.

 new <type name> [[<integer expression>]]*

The integer expression is used to specify a dimension of an object. At runtime each expression is evaluated, and if
the values are less than one, the operation aborts. The new term returns an empty (null) pointer when a runtime error
occurs.

Examples:

 new class date[100] //Vector of 100 class objects.

 new integer[200][200] //200 x 200 array of integers.

 new integer **[200] //Vector of 200 (integer **).

 new integer //Single integer.

Form 3:

This form is used to create a single class object. The new operator uses the specified constructor to initialize the new
class object.

 new <constructor>

Examples:

 new date()

 new date(1, 1, 2000)

 new date(4, 19, 1964)

 new date("January 1, 2000")

 System Functions

 86

Delete

The delete operator destroys an object created by the new operator. Delete's operand must be a pointer returned by
the new operator (please note).

Syntax

 delete [[<expr1>]] <expr2>

If expr2 is of type (class *), then expr1 can optionally be used to specify the length of the vector to be deleted. This is
done so that a class's destructor can be applied to every element of an arbitrarily sized vector.

Description

Delete can only destroy a single dimension of a data structure. This vector, provided no exceptions occur, is always
completely freed. Never use delete on an address that was not directly returned by new.

To free a multi-dimensional array allocated by new; delete must be called once for each dimension of the array.

OPS-2000 will generate runtime errors if either a size expression's value exceeds the size of the vector or if the value
is negative. If the value is zero, then delete does not free the vector. If no size expression is given, and the vector is a
class object, then the system assumes it is of length one and applies the appropriate destructor.

The delete term first evaluates any size expression, and then checks the properties of the vector. If the vector is
NULL, then delete does nothing. Otherwise it continues by checking for one of the possible runtime errors described
above. Next if applicable it applies a destructor. Lastly it frees the vector.

Deleting an object that has already been deleted will corrupt the system. Thus immediately after a vector has been
deleted, all references to it should be removed.

 System Functions

 87

Functions

In the current version of OPS-2000, all function parameters are passed by value. The C++ language has a pass by
reference option which is not supported in the current OPS-2000 release.

A function name may be duplicated (overloaded), so its prototype is used to resolve the ambiguity.

A function's prototype can be given before its actual definition is specified. This prototype indicates the function's
parameter types and return type specifications. A function prototype cannot have named parameters, its parameter
specification consists solely of each parameter's type. For example:

 real Sort(integer, integer *, char *);

There are two basic types of functions: class and general.

A class function definition is local to its class's definition and can either be an operation, constructor, or destructor.
These are declared by specifying the function in the class definition, which can also include a function definition. If a
class function's definition is given outside of the class specification, then the function specification name must be
prefixed with a class name qualifier which takes the form:

 <class name> :: <function name>.

An example:

 //

 //employee :: Print()

 //

 integer employee :: Print ()

 {

 return(1);

 }

 System Functions

 88

Globals

A global variable can be accessed directly from a function body definition by using the global qualifier. This resolves
any potential scope problems.

 ::<variable usage>

 System Functions

 89

Inference Engine Function

The inference engine function is used to control the inferencing process. This function uses a set of system defined
functions to perform actions such as the firing and removal of activations. There is a wealth of functions that provide
information on everything from an expert object's current state to an activation's match set size.

Library

Given below is a summary of the inference engine function control library. Formal descriptions of these functions is
given at the end of this manual.

EO - Expert Object

PA - Primary Agenda

LA - Local Agenda.

IE - Inference Engine

RS - Rule Set

CS - Conflict Set

MS - Match Set

WM - Working Memory

WME - Working Memory Element

ACT - Activation

 System Functions

 90

Function Description

ie_eo_stats Provides general IE statistics.

ie_watch IE watch flag value.

ie_eo_wm_cmp Sets EO's flag for comparing WME's.

ie_eo_wm_size Size of a particular working memory.

ie_eo_wme_remove Retract a WME.

ie_eo_stop Stops the current EO.

ie_eo_is_stopped Is the current EO stopped?

ie_pa_rs_size Size of the EO's PA.

ie_pa_rs_info Information about a PA rule set.

ie_pa_rs_index_by_sys_id PA index for the RS id.

ie_pa_rs_index_by_name PA index for the RS name.

ie_cs_size A RS's conflict set size.

ie_cs_fire Fire an activation.

ie_cs_remove Remove an activation.

ie_cs_fire_remove Atomically fire & remove an activation.

ie_act_rule_info General information about the rule.

ie_act_rule_stats Information about the activated rule.

ie_act_nth_ms_id Returns WME id for the nth MS member.

ie_default Specify the default inference engine.

 System Functions

 91

Statement

The elementary actions of evaluation, assignment, and control of evaluation order are specified by the statements of a
programming language. OPS-2000 has two groups of statements: those that can appear anywhere a statement is
permitted (for, while, do-while, if-else, return, continue, break, switch, case, default, expression, compound, empty),
and those that can only appear within an expert object (printout, excise, stop, assert, retract, reassert, refute, send,
receive, activate, deactivate).

Activate

The activate statement is used to activate a rule set. It can also be used to dynamically change a rule set's runtime
priority. This statement can only appear within an EO, and its actions can only affect a rule set within that EO.

Syntax

 activate <symbol expr> [: <integer expr>] ;

Description

The symbol expression is evaluated for a rule set's name. If the rule set name exists and the corresponding rule set is
inactive, then its state is set to be active, and any data in its input queue is pattern matched to its rules. If the rule set
name doesn't exist, then a runtime error is flagged.

An activate statement can also change a currently active rule set's runtime priority (dynamic runtime priorities). The
integer expression's value is the active rule set's new priority value.

Assert

The assert statement is used to assert a data object into one of three destinations: FWM, GWM, or a character buffer.

Syntax

This statement has two general forms.

Form 1: assert(<element> [, <element>]*) [: <real expr>]

 [=> [<symbol expr> | <char pointer expr>]];

Form 2: assert <class pointer expr> [: <real expr>] ;

Description

Form 1:

This form is used to assert facts into one of three destinations: FWM, GWM, or a character buffer.

An assert element can be one of the following: match or segment variable, integer, real, symbol, or pointer to
character.

If an element's final value is a match object, then that match variable has to be bound to a fact object. The match
variable can have an optional relation output format specifier proceeding it: $<variable> : <format>. If at runtime the
match variable is bound to a relation object, then that object's relation definition is used for the search for the specified
output format. If the format exists, then it is used, otherwise the relation's generic output format is used.

The symbol expression must take the value of either FWM or GWM.

If a fact is asserted into a buffer, then the buffer will take the value of the fact's string representation.

 System Functions

 92

Form 2:

This form is used to assert a class object into the FWM. If the evaluated expression is NULL, then nothing is asserted.
The certainty expression is always evaluated.

Break

Syntax

 break;

Description

The break statement causes the termination of the smallest enclosing switch, while, do, or for. Control passes to the
statement immediately following the terminated statement.

Compound

A compound statement is used to group declarations and statements. This grouping is often referred to as a block.

Syntax

 {

 [<declaration>]*

 [<statement>]*

 }

This syntax allows for blocks to be nested.

Description

A block's declarations are evaluated each time it is entered, meaning the block's objects are created and initialized
each time it is entered.

All block references are bound at compile time (static binding). This is also referred to as lexical scoping.

The conventional rules of lexical scoping are:

1. The scope of a declaration includes the block in which it occurs but excludes any surrounding block.

2. The scope of a declaration includes any block contained within the block in which the declaration occurs, but
excludes any contained block in which the same variable name is redeclared.

A function's body and a rule's body are two instances of where a block specification has been used in the OPS-2000
syntax.

Continue

Syntax

 continue;

Description

The continue statement causes control to pass to the loop continuation portion of the smallest enclosing while, do,
or for.

 System Functions

 93

Deactivate

The deactivate statement is used to transfer a rule set to an inactive state. Any new assertions are placed into the rule
set's input queue. The rule set still processes retracts which can be as simple as removing a data object from the rule
set's input queue, or as complicated as removing the data object from the rule set's pattern matching network. An
inactive rule set will not appear in the primary agenda.

This statement can only appear within an EO, and its affect is limited to its enclosing EO's rule sets.

Syntax

 deactivate <symbol expr> ;

Description

The symbol expression is evaluated for a rule set name. If this rule set exists then its state is set to inactive, otherwise
a runtime error is flagged.

Do-While

Syntax

 do <statement> while (<expr>);

Description

The flow of control is: first the statement is executed, then the expression is evaluated. If the expression's value is true
(nonzero), then the loop is continued, otherwise it is exited.

Excise

Syntax

 excise <symbol expr> ;

Description

At runtime the symbol expression is evaluated. If the rule name exists in the firing rule's rule set, then the rule is
removed from the system, otherwise the system ignores the request.

Expression

Syntax

 <expression> ;

Description

The expression is executed.

For

The for statement is used for loop iteration.

Syntax

 System Functions

 94

 for (<statement1> [<expr1>] ; [<expr2>])

 <statement2>

Description

Statement1 serves as the loop's initializer. Expr1 is evaluated before each execution of the loop's body, if its value is
false (zero) then the loop is exited. Statement2 is the loop's body. Lastly, expr2 is always executed immediately after
statement2's execution.

If-Else

The conditional statement is used for conditional statement execution.

Syntax

 if (<expr>)

 <statement1>

 [else

 <statement2>]

Description

If the expression is true, then statement1 is executed, otherwise if statement2 is specified then it is executed.

As usual the "else" ambiguity is resolved by connecting an else with the last encountered else-less if.

Null

Provides a mechanism to specify an empty statement (no actions).

Syntax

 ;

Description

This statement has no meaning.

Examples

 integer i;

 //A simple loop to consume CPU time.

 for (i = 0; i < 2000; i++);

 //An infinite loop

 for (;;)

 printf("Hello World\n");

Printout

Prints out a line of text followed by a carriage return.

Syntax

 System Functions

 95

 printout ([<element> [, <element>]*]);

Description

An element can be one of the following: match or segment variable, integer, real, symbol, or pointer to character. If
the element list is empty, then the printout acts like a carriage return.

If an element's final type is match object, then that match variable has to be bound to a fact object. The match
variable can have an optional relation output format specifier proceeding it: $<variable> : <format>. At runtime, if the
match variable is bound to a relation object, then that relation's definition is searched for the output format name. If the
format exists, then it is used, otherwise the generic output format is used.

Reassert

Efficiently reperforms a FWM element's pattern matching. Goals cannot be reasserted.

Syntax

 reassert <match variable> [: <integer expr>]

 [, <match variable> [: <integer expr>]]* ;

Description

The match variable must have been bound in the rule's pattern logic, otherwise a runtime error is flagged. The bound
object is retracted and then asserted. The original object is not destroyed.

The integer expression is so that a reasserted data object can be given a new certainty, if this value is not specified
then the new assertion will have the same certainty as the original.

If the match variable was bound to a goal, then it is simply ignored. This is not a runtime error.

Receive

The receive statement is used to receive messages from a channel.

Syntax

 receive(<channel name>, <char pointer expr>, <integer expr>);

The channel name is evaluated at compile time and it must be a symbol constant.

Description

The channel name must be declared before it is used. Only one EO can receive from a particular channel, but there is
no actual limit on the number of receive statements an EO can have for a particular channel.

If there is an input message then it is placed into the character buffer specified by the character pointer expression. If
there is no input message, then the sending EO is executed (run()) with the integer expression's value as the steps
parameter and the buffer is rechecked for an input message. If there are still no messages then byte zero of the input
buffer is set to the null character: '\0'. A busy wait loop can be implemented if receiving a message is mandatory. The
integer expression is only evaluated if there were no original messages in the channel.

Refute

The refute statement is used to refute a goal. Refute means to prove a statement or argument to be false or
erroneous.

 System Functions

 96

Syntax

 refute <match variable> [, <match variable>]* ;

Description

Goals:

If the match variable is bound to a goal, then that goal is retracted. The following rules apply:

1. If that goal was a member of a subgoal group then the entire subgoal group is retracted.

2. If (1) was the last subgoal group that the parent goal has, then the parent goal is refuted.

3. If the goal was not a member of a subgoal group, then the goal is simply removed from the GWM.

Facts:

If the match variable is bound to a fact, then that fact is simply retracted as if the refute was actually a retract.
However don't confuse the two when its comes to goals, for they have completely different results. The use of retract
on a goal object indicates that the goal has been proven.

Retract

The retract statement is used to retract a data object from its working memory. This statement can only appear within
a rule's body.

Syntax

 retract <match variable> [, <match variable>]* ;

Description

Facts:

A retracted fact is simply removed from the FWM.

Goals:

A retracted goal is removed from the GWM. This action indicates that the goal has been proven, if this is not the case
then the refute statement should be used. The following rules apply:

1. If the goal has no parent, then the goal is asserted into the FWM, for it has been proven.

2. If the goal was the last member of a subgoal group then retract is applied to the parent goal.

3. If the goal was not the last member of a subgoal group then the goal is simply retracted.

Overview

The match variable must have been bound in the rule's pattern logic. If retract is given an unbound match variable,
then a runtime error is flagged.

If the match variable is bound to a class object, then the actual class object is not destroyed. This object must be
explicitly destroyed using delete. For example:

 defrule Example

 {

 match employee;

 $employee <- {employee ^name ? }

 System Functions

 97

 =>

 delete $employee; //Delete's the class object.

 retract $employee; //Delete's employee's WME.

 } //Example

The use of delete before retract is not mandatory. A retracted WME's value physically exists until the rule's firing
completes.

One way to determine whether or not a class object is in working memory is to have a flag in the class's definition that
is explicitly set to true when the object is asserted, and later set to false when it is retracted. For example:

 /*

 * AssertEmployee

 */

 defrule AssertEmployee

 {

 ($?)

 =>

 class employee *object;

 ?object = new employee;

 ?object->assert = 1;

 assert ?object;

 } /*AssertEmployee*/

 /*

 * RetractEmployee

 */

 defrule RetractEmployee

 {

 match object;

 $object <- {employee}

 =>

 $object->assert = 0;

 retract $object;

 } /*RetractEmployee*/

Return

Return from a function or rule body.

Syntax

 return [<expr>] ;

 System Functions

 98

Description

The return statement exits from the enclosing function or rule body. Its expression's value is relevant only when the
statement appears in a function, for there it is treated as the function's return value. Thus a return without an
expression indicates that the function doesn't return a value, and therefore it is acting as a procedure. A rule's body is
modelled after this type of procedure function.

Send

The send statement is used to place a message into a channel.

Syntax

 send(<channel name> , <char pointer expr>);

The channel name is evaluated at compile time and it must be a symbol constant.

Description

A channel name must be declared before it can be used. There can only be one EO sending into a particular channel.
However there is no actual limit on the number of send statements an EO can have for a particular channel.

Stop

The stop statement is used to set an EO's stop flag.

Syntax

 stop;

Description

This statement sets the EO's stop flag to true, and then acts like a return statement.

Switch

The switch statement causes control to be transferred to one of several statements depending on the value of an
expression.

Syntax

 switch (<integer expression>)

 <statement>

A switch statement can have zero or more values specified using the case label syntax, no two of which can have the
same integer constant value. If a value is matched, the statement proceeding it is branched to.

 case <integer constant value> : <statement>

A switch statement can optionally have a default label. This label is branched to if none of the case values match the
switch expression's value.

 default : <statement>

 System Functions

 99

Description

OPS-2000 has a limited form of the switch statement. This form is limited in that if the switch's statement is a
compound statement, then its case statements cannot appear within any nested compound statements. The case
constant expressions must be of type int, which in OPS-2000 means it can be either char or integer.

A switch statement can be seen as a special statement form such that based on the integer expression's value, a
branch is made into the statement. If this statement is a compound statement, then a branch is made to a point in that
compound statement. Otherwise, the branch can only be made to the start of the statement. For example:

 switch (x) //noncompound statement

 case 10 :

 case 20 :

 for (i = 0; i < 10; i = i + 1);

 switch (x) { //compound statement

 case 10 :

 i = 30 + x;

 break;

 case 20 :

 hello();

 } /*switch*/

The switch statement recognizes the break statement.

While

The while statement is used for loop iteration.

Syntax

 while (<expr>)

 <statement>

Description

The expression is evaluated, if true (nonzero) then the statement is executed. This cycle continues until the
expression evaluates to false.

 System Functions

 100

Typedef
This declaration is used for creating new data type names. It creates a synonym for an existing type, rather than a
new type. For example:

 typedef integer INDEX;

The above typedef makes the name INDEX a synonym for integer. The "type" LENGTH can be used anywhere
"type" integer can be used.

The OPS-2000 version of the typedef facility is limited in that it only permits a new data type name to take on a type
definition that precedes the name in the typedef. For example:

 typedef integer INDEX, *INDEX_PTR; //(int), (int *)

 typedef char *letter_ptr, letter; //(char *), (char)

 System Functions

 101

Variable

A variable declaration is a type specification followed by a variable name. For example:

 integer a;

 integer a, b, c;

 char *a, **b, c[10];

 char a[20];

 real a[10][20][30];

 real *a[10][20];

 System Functions

 102

OPS-2000 System Functions

System Functions

A compiled function can return either a real, integer, char, or symbol value. Pointer values cannot be explicitly
returned from a compiled function. Single dimensional arrays of these four types can be passed to compiled
functions. Symbols returned by compiled functions are entered into the system's symbol table. A symbol returning
compiled function actually returns a character string which is entered into the system's symbol table. Symbols are
almost identical to string constants, except the equality operators can be applied to them and they should never be
destroyed.

Operating Environment

The operating environment library is composed of functions that serve primarily as the command-line interface.
Functions in this library can only be called from the interpreter environment (please note).

The OPS-2000 operating environment has two primary features: the C++ interpreter and the Current Working
Environment (CWE). The CWE refers to where in the knowledge reasoning system the interpreter is currently
focused. This tree-like structure has a root with its children being all of the currently loaded expert object definitions.
The root, its expert objects, and all of those expert objects' rule sets, each have their own operating environments.
This structure can be traversed using the ce() function.

 ┌──────────────────────────────┐

 │ ROOT │

 └──────┬────────────────┬──────┘

 ┌───────┘ └───────┐

 ┌─────────┴─────────┐ ┌─────────┴─────────┐

 │ expert object 1 │ ... │ expert object N │

 └─┬───────────────┬─┘ └───────────────────┘

 ┌──┘ └──┐

┌───┴───┐ ┌───┴───┐

│ RS 1 │ ... │ RS M │

└───────┘ └───────┘

Variable declarations that are local to each environment can be displayed using the list() function. This operating
environment hierarchy allows the developer to simultaneously debug and test multiple expert objects.

 System Functions

 103

Name

agenda() - display agenda

Synopsis

integer agenda()

integer agenda(path)

char *path;

Description

If agenda() is given no parameters then the agenda of the current expert object or rule set is displayed.

If agenda() is given a parameter then

1. If there is a current expert object then

i) If parameter's value is "primary" then the Expert Object's primary agenda is displayed.

ii) If not (i) then if the parameter's value is a rule set name in the current expert object, then the rule set's local
agenda is displayed.

2. Otherwise the parameter is interpreted as the name of an expert object.

 System Functions

 104

Name

cwe(), ce() - current environment information

Synopsis

integer cwe()

integer ce()

integer ce(cwe)

char *cwe;

Description

Function cwe() displays the Current Working Environment (CWE).

Function ce() sets the root environment to be the CWE.

Function ce(path) is used to change the CWE. Its parameter format is:

 <string1> [: <string2>]

If only string1 is specified then:

1. If there is a current expert object and string1 is the name of one of its rule sets, then set the CWE to be that of the
rule set's.

2. If there is a current expert object and string1 is not the name of one of its rule sets, but it is the name of another
expert object, then set the CWE to be that of the expert object's.

3. If there is not a current expert object and string1 is the name of an expert object, then set the CWE to that of the
expert object's.

If both string1 and string2 are specified, then string1 is interpreted as an expert object's name, and string2 is
interpreted as a rule set within that expert object. If both the expert object and its rule set exist, then the environment
is changed to that of the corresponding rule set's.

 System Functions

 105

Name

channel() - channel information

Synopsis

integer channel(channel)

char *channel;

Description

Function channel() is used to display information about a particular channel. This includes its name, sender expert
object, receiver expert object, and the current state of its message buffer.

 System Functions

 106

Name

clear() - clear all definitions from the system

Synopsis

integer clear()

integer clear(eo_name)

char *eo_name;

Description

If clear() is given no parameters then the system is cleared of all definitions.

If clear() is given a parameter then the parameter must be the name of a noncurrent expert object. If the expert object
exists, it is cleared from the system.

 System Functions

 107

Name

declare() - declare a string definition

Synopsis

integer declare(definition)

char *definition;

Description

Function declare() is used to declare a top-level definition into the system. Remember that string constants have a
limited length, while dynamic strings can be of any length.

Example

--> declare("integer a, b, c;");

--> declare("overload Hello;");

 System Functions

 108

Name

edit() - interface function for editing

Synopsis

integer edit(param)

char *param;

integer edit(param)

symbol param;

Description

Function edit() can be used to access the editor specified by the environment variable "editor". The value of this
variable should correspond to an executable system editor. See env().

 System Functions

 109

Name

env(), set() - functions for accessing and setting OE variables

Synopsis

integer env()

integer set(set_string)

char *set_string;

Description

Function env() is used to display the OE's variables' values.

Function set() is used to set an OE variable's value. Its format is:

 <name>=<value>

The table given below gives a summary of the OE's variables.

Name Description

editor Editor name used by edit().

prompt OE prompt value.

cwe If set to true, then the CWE is displayed to the left of the prompt string.
When set to false, only the prompt string will appear.

rule If set to true, then the OE statement interpreter will accept rule specific
statements such as assert. If set to false, then the OE statement
interpreter only accepts C++ statements.

Examples

-->

--> set("editor=emacs");

--> set("rule=true");

-->

 System Functions

 110

Name

exit() - exit function

Synopsis

integer exit()

Description

Function exit() is used to exit the system.

 System Functions

 111

Name

facts(), goals() - display working memories

Synopsis

integer facts()

integer goals()

Description

If there is a current expert object then facts() and goals() will respectively display its FWM and GWM.

These functions display each element of a working memory. If that element is a fact object, then its string
representation is used. However a class object's value will only be displayed if a print operation is defined for its class.
This print operation can have any return type, must have zero formal parameters, and can either be named print() or
Print(). If both print() and Print() are defined, then the first one from the top of the class's definition will be used.

Example

 class employee {

 integer a, b;

 integer Print()

 {

 printf("%d %d", this->a, this->b);

 return;

 } /*Print*/

 } /*employee*/

 System Functions

 112

Name

fctns() - lists out all system level functions

Synopsis

integer fctns()

Description

Function fctns() lists out all system level functions.

 System Functions

 113

Name

free_form() - set the system's free-form flag

Synopsis

integer free_form(state)

integer state;

Description

Function free_form() is used to set the system's free-form flag. If this flag is nonzero, then free-form patterns and
facts are accepted by the compiler. Otherwise a warning message is issued each time a free-form fact or pattern is
compiled. The free-form flag defaults to a nonzero value.

Function ops_free_form() is the compiled version of this function.

 System Functions

 114

Name

gensym(), setgen() - generate symbol functions.

Synopsis

integer gensym()

integer setgen(start)

integer start;

Description

Function gensym() is used to generate a symbol with the format:

 gen<num>

After each gensym() call the system increments the value of <num> starting from a default value of zero. The value
of <num> can directly be set by using the function setgen().

Example

-->

--> setgen(10)

--> printf("%s %s %s\n", gensym(), gensym(), gensym())

gen10 gen11 gen12

-->

-->

 System Functions

 115

Name

list() - list system information

Synopsis

integer list(keyword)

char *keyword;

Description

Function list() is used to list information about the system. The table given below gives a summary of its keywords.

Name Description

channel List out the names of all the channels in the system.

eo List out the names and states of all Expert Objects.

fctns List out the function prototypes of all nonclass (top level) functions in
the system.

rs If there is a current expert object, then list out the names of its rule
sets.

rule If there is a current expert object and a current rule set, then list out the
names of the rule set's rules.

scope From the current working environment to the root, list out the local
variable names of each block.

stats List out the current expert object's statistics.

vars List out the local variable names of the current working environment's
block.

 System Functions

 116

Name

load() - load a file of definitions into the system

Synopsis

integer load(path)

char *path;

Description

Function load() takes one string parameter that specifies the name of an operating system file.

Example

-->

--> load("xmas.ops");

--> load("date.ops");

-->

 System Functions

 117

Name

open_dribble(), close_dribble() - record system information

Synopsis

integer open_dribble(file, append)

char *file;

integer append;

integer close_dribble()

Description

Function ops_open_dribble() turns on the OPS-2000 dribble feature. When this feature is on, all output by OPS-
2000 functions is sent to the specified file name. If append is nonzero then the output information (dribble) is
appended to the contents of the specified file. If append is zero then the file is truncated when it is opened for writing.

Function close_dribble() turns off the dribble feature, and closes any opened dribble file.

Notes

The Microsoft Windows version of this function dribbles all of text that is sent to the STDIO window. Consequently, the
dribble file is an exact copy of the STDIO window.

The command-line version of this function does not dribble the standard input/output streams. It only dribbles values
produced by OPS-2000 specific functions. Consequently, function printf() does not dribble its output.

 System Functions

 118

Name

ops_send(), ops_receive() - send and receive EO messages.

Synopsis

integer ops_send(channel, mesg)

char *channel;

char *mesg;

integer ops_receive(channel, mesg, steps)

char *channel;

char *mesg;

integer steps;

Description

Function ops_send() sends a message to a channel declared using the defchannel declaration.

Function ops_receive() receives a message from a channel declared using the defchannel declarartion.

Notes

These functions should not be called either directly or indirectly from an expert object.

 System Functions

 119

Name

print() - general print functions

Synopsis

integer print(value)

char value;

integer print(size, value)

integer size;

char *value;

integer print(value)

char *value;

integer print(value)

integer value;

integer print(size, value)

integer size;

integer *value;

integer print(value)

real value;

integer print(size, value)

integer size;

real *value;

integer print(value)

symbol value;

integer print(size, value)

integer size;

symbol *value;

 System Functions

 120

Description

Function print() is used to display data objects of a particular type. If this function is given two actual parameters, then
the second parameter should be a vector of which the first parameter specifies the number of its elements to be
displayed.

Example

char one[100];

double y;

--> print(y); //print object's value

--> print(10, one); //print out first ten elements

--> print("hello world"); //print object's value

 System Functions

 121

Name

query() - general query functions

Synopsis

integer query(prompt, result)

char *prompt; /*IN: prompt string*/

char *result; /*OUT: char*/

integer query(prompt, result)

char *prompt; /*IN: prompt string*/

integer *result; /*OUT: integer*/

integer query(prompt, result)

char *prompt; /*IN: prompt string*/

real *result; /*OUT: real*/

integer query(prompt, result)

char *prompt; /*IN: prompt string*/

symbol *result; /*OUT: symbol*/

integer query(prompt, result, size)

char *prompt; /*IN: prompt string*/

char *result; /*OUT: string*/

integer size; /*IN: size of result string*/

Description

Function query() is used for general input queries. Its first parameter is a prompt string that is displayed when query()
is called, the other parameters are its input values.

Example

integer int_value;

real real_value;

symbol symbol_value;

char char_value;

char string_value[120];

--> query("enter integer value => ", &int_value);

 System Functions

 122

--> query("enter real value => ", &real_value);

--> query("enter symbol value => ", &symbol_value);

--> query("enter character value => ", &char_value);

--> query("enter string value => ", string_value, 120);

The string query() function takes as input at most size - 1 characters.

 System Functions

 123

Name

reset() - function for resetting expert objects

Synopsis

integer reset()

integer reset(path)

char *path;

Description

Resetting an expert object means that its working memories and associated structures are set to their initial states,
and the expert object is set to state: running. This means that in addition to the initial goal and fact, the only other
asserted data objects are from the EO's deffacts and defgoals declarations. Also all channels that have the EO as
their sender are reset.

If reset() is given no parameters then:

1. If there is a current EO, then it is reset.

2. If not (1) then all of the system's expert objects are reset.

If reset() is given a parameter then it must be an expert object name, which will subsequently be reset.

 System Functions

 124

Name

run() - run an expert object.

Synopsis

integer run(steps)

integer steps;

integer run(eo, steps)

char *eo;

integer steps;

Description

Function run() is used to run an expert object. The steps parameter is passed to an expert object's inference engine
function which interprets its meaning.

If run() has one parameter then

1. If there is a current EO, then it is run.

2. If not (1) then repeatedly run all of the expert objects in the system until they have all stopped.

If run() has two parameters, then the specified EO is run with the given steps parameter.

 System Functions

 125

Name

strtosym() - convert a string to a symbol

Synopsis

symbol strtosym(str)

char *str;

Description

Function strtosym() is used to convert character strings to system symbols. Once a symbol is created, it will exist
until OPS-2000 program termination.

 System Functions

 126

Name

system() - execute an operating system command.

Synopsis

integer system(command_line)

char *command_line;

Description

Function system() is used to execute an operating system command. This is identical to the "C" system() function.

Example

-->

--> system("vi .profile");

--> system("vi mab.ops")

--> system("copy mab.ops mab1.ops");

--> system("del mab1.ops");

--> system("ksh");

--> system("csh");

--> system("sh");

--> system("vi");

--> system("ed");

--> system("emacs autoexec.bat");

-->

 System Functions

 127

Name

watch(), unwatch() - system monitoring functions

Synopsis

integer watch(keyword)

char *keyword;

integer unwatch(keyword)

char *keyword;

Description

Function watch() is used to turn on the monitoring of certain system operations.

Function unwatch() is used to turn off the monitoring of certain system operations.

Name Monitor Description

all All types of monitoring.

activations The activation and deactivation of rules.

facts The assertion and retraction of working memory elements.

fctns A function's compilation, calling, or exit.

ie Inference engine function monitoring.

mesgs The sending and receiving of messages.

rules The compilation and destruction of rules.

 System Functions

 128

Standard Input/Output

Keyboard and screen I/O functions.

 System Functions

 129

Name

getchar(), putchar() - single character input/output

Synopsis

integer getchar()

integer putchar(ch)

integer ch;

Description

Function getchar() gets a character from the standard input.

Function putchar() puts a character to the standard output.

 System Functions

 130

Name

printf(), scanf() - formatted string input/output

Synopsis

integer printf(str ...)

char *str;

integer scanf(str ...)

char *str;

Description

These functions are identical to their "C" counterparts.

 System Functions

 131

File Input/Output

The interpreter environment currently cannot handle file pointers as returned by fopen(). This is due to the fact that
structures cannot be passed between the C++ interpreter and compiled "C" functions.

 System Functions

 132

Name

close(), open(), read(), write() - file I/O functions

Synopsis

integer close (file)

integer file;

integer open(path, oflag, mode)

char *path;

integer oflag;

integer mode;

integer read(file, buffer, nbyte)

integer file;

char *buffer;

integer nbyte;

integer write(file, buffer, nbyte)

integer file;

char *buffer;

integer nbyte;

Description

These functions are identical to their "C" counterparts.

 System Functions

 133

String

String operations.

 System Functions

 134

Name

sprintf(), sscanf() - string input to formatted string input/output

Synopsis

integer sprintf(str1, str2 ...)

char *str1;

char *str2;

integer sscanf(str1, str2 ...)

char *str1;

char *str2;

Description

This functions are identical to their "C" counterparts.

 System Functions

 135

Name

strcpy(), strlen(), strcmp(), strcat() - string operations

Synopsis

integer strcpy(to, from)

char *to;

char *from;

integer strcpy(to, from)

char *to;

symbol *from;

integer strlen(str)

char *str;

integer strlen(sym)

symbol sym;

integer strcmp(str1, str2)

char *str1;

char *str2;

integer strcmp(str, sym)

char *str1;

symbol sym;

integer strcat(str1, str2)

char *str1;

char *str2;

integer strcat(str, sym)

char *str;

symbol sym;

 System Functions

 136

Description

The symbol parameter type is passed to compiled functions as a character string. A symbol, like a string constant,
should never be modified.

These functions are almost identical to their "C" counterparts. The sole exceptions being where integer is returned
instead of (char *).

 System Functions

 137

Inference Engine

The inference engine function is used to control the inferencing process. This function uses a set of system defined
functions to perform actions such as the firing and removal of activations. This library contains a wealth of functions
that provide information on everything from the size of an EO's primary agenda to the retraction of a particular WME.

On error, these functions return negative values.

Library

EO - Expert Object

PA - Primary Agenda

LA - Local Agenda.

IE - Inference Engine

RS - Rule Set

CS - Conflict Set

MS - Match Set

WM - Working Memory

WME - Working Memory Element

ACT - Activation

The general inference engine function format is:

integer <name>(ie_id, steps)

integer ie_id;

integer steps;

{

 ...

}

Each expert object has an inference engine function associated with it. When this function is called it is passed a
unique inference engine id (ie_id) that identifies to the system what expert object the function was called for. This id is
mapped to an expert object for the duration of the inference engine function call.

 System Functions

 138

Name

ie_act_rule_info(), ie_act_rule_stats(), ie_act_nth_ms_id() - rule activation functions

Synopsis

integer ie_act_rule_info(ie_id, rs_index, cs_index, name, summary, type, priority)

integer ie_id; /*IN*/

integer rs_index; /*IN*/

integer cs_index; /*IN*/

char *name; /*OUT*/

char *summary; /*OUT*/

integer *type; /*OUT*/

integer *priority; /*OUT*/

integer ie_act_rule_stats(ie_id, rs_index, cs_index, threshold, use, wm_ms_sz, min_wme_id)

integer ie_id; /*IN*/

integer rs_index; /*IN*/

integer cs_index; /*IN*/

real *threshold; /*OUT*/

integer *use; /*OUT*/

integer *wm_ms_sz; /*OUT*/

integer *min_wme_id; /*OUT*/

integer ie_act_nth_ms_id(ie_id, rs_index, cs_index, n, nth_wme_id)

integer ie_id; /*IN*/

integer rs_index; /*IN*/

integer cs_index; /*IN*/

integer n; /*IN*/

integer *nth_wme_id; /*OUT*/

 System Functions

 139

Description

Function ie_act_rule_info() is used to get rule definition information for a particular activation. The values passed by
variable type currently have the following rule type mappings. If the match set is empty (for example all NOT patterns
were used), then variable min_wme_id will be set to -1.

Value Actual Rule Type

1 forward chaining/normal form

2 backward chaining

3 forward chaining/fuzzy

4 forward chaining/confidence factor

Function ie_act_rule_stats() is used to get rule activation information.

Function ie_act_nth_ms_id() is used to return the WME id for the nth member of an activation's match set. An
activation's match set is indexed from zero to n - 1. For example:

 integer i, wme, ms_ct;

 ie_act_rule_stats(..., &ms_ct, ...);

 for (i = 0; i < ms_ct; i++) {

 ie_act_nth_ms_id(ie_id, rs_index, cs_index, i, &wme);

 printf("match set index %d; wme id %d\n", i, wme);

 } /*for*/

 System Functions

 140

Name

ie_cs_rs_size(), ie_cs_fire(), ie_cs_remove(), ie_cs_fire_remove() - conflict set operations.

Synopsis

integer ie_cs_size(ie_id, rs_index)

integer ie_id; /*IN*/

integer rs_index; /*IN*/

integer ie_cs_fire(ie_id, rs_index, cs_index)

integer ie_id; /*IN*/

integer rs_index; /*IN*/

integer cs_index; /*IN*/

integer ie_cs_remove(ie_id, rs_index, cs_index)

integer ie_id; /*IN*/

integer rs_index; /*IN*/

integer cs_index; /*IN*/

integer ie_cs_fire_remove(ie_id, rs_index, cs_index)

integer ie_id; /*IN*/

integer rs_index; /*IN*/

integer cs_index; /*IN*/

Description

Function ie_cs_size() returns a rule set's conflict set (local agenda) size. This value will always be greater than zero
since a rule set that appears in the primary agenda has to have at least one rule activation.

Function ie_cs_fire() fires a particular member of the conflict set. This conflict set is stored in the rule set's local
agenda.

An activation's position in a local agenda may change when it is fired. Consequently, to atomically fire and remove an
activation the ie_cs_fire_remove() function should be used.

Function ie_cs_remove() is used to remove a particular member of the conflict set.

Function ie_cs_fire_remove() is used to atomically fire and remove an activation from a rule set's local agenda.

 System Functions

 141

Name

ie_default() - specify the default inference engine

Synopsis

integer ie_default(fctn_prototype)

char *fctn_prototype;

Description

This function is used to set the default inference engine function.

Example

int ops_default_ie(int ie_id, int steps)

{

 int run;

 for (run = 0; ((ie_pa_rs_size(ie_id) > 0) && (steps > 0));

 steps--) {

 run++;

 if (ie_eo_is_stopped(ie_id))

 break;

 if (ie_cs_fire_remove(ie_id, 0, 0) < 0)

 break;

 } /*for*/

 if (ie_watch() != 0)

 printf("%d rules fired.\n", run);

 return;

} /*ops_default_ie*/

user_fctns()

{

 ...

 ie_default("integer ops_ie_default(int, int)");

 ...

} /*user_fctns*/

 System Functions

 142

Name

ie_eo_stats() - general IE statistics

Synopsis

integer ie_eo_stats(ie_id, name, asserts, retracts, activations, firings, sent, received)

integer ie_id; /*IN*/

char *name; /*OUT: expert object name*/

integer *asserts; /*OUT: number of successful asserts*/

integer *retracts; /*OUT: number of successful retracts*/

integer *activations; /*OUT: number of rule activations*/

integer *firings; /*OUT: number of activations fired*/

integer *sent; /*OUT: number of messages sent by EO*/

integer *received; /*OUT: number of messages recv'd by EO*/

Description

Returns statistics on the specified EO. These values are reset when the associated EO is reset.

 System Functions

 143

Name

ie_eo_wm_cmp(), ie_eo_wm_size(), ie_eo_wme_remove() - working memory functions

Synopsis

integer ie_eo_wm_cmp(ie_id, compare)

integer ie_id; /*IN*/

integer compare; /*IN*/

integer ie_eo_wm_size(ie_id, wm)

integer ie_id; /*IN*/

integer wm; /*IN*/

integer ie_eo_wme_remove(ie_id, wme_id)

integer ie_id; /*IN*/

integer wme_id; /*IN*/

Description

Function ie_eo_wm_cmp() sets an EO's WME comparison flag. If this flag is set to true, then each new fact asserted
into the FWM is first compared to all existing facts in the FWM. If the new fact has an identical value to an existing
fact, then it is ignored. The WME comparison flag defaults to true.

Function ie_eo_wm_size() returns a working memory's size. If wm is zero, then the size of the GWM is returned. If
wm is one, then the size of the FWM is returned.

Function ie_eo_wme_remove() is used to retract a WME. This operation acts like a retract statement. A WME's id
can be retrieved using ie_act_nth_ms_id().

 System Functions

 144

Name

ie_eo_stop(), ie_eo_is_stopped() - EO current state functions

Synopsis

integer ie_eo_stop(ie_id)

integer ie_id; /*IN*/

integer ie_eo_is_stopped(ie_id)

integer ie_id; /*IN*/

Description

Function ie_eo_stop() sets a particular EO's stop flag to true.

Function ie_eo_is_stopped() returns the value of an EO's stop flag.

 System Functions

 145

Name

ie_pa_rs_size(), ie_pa_rs_info(), ie_pa_rs_index_by_sys_id(), ie_pa_rs_index_by_name()

 - returns primary agenda information.

Synopsis

integer ie_pa_rs_size(ie_id)

integer ie_id; /*IN*/

integer ie_pa_rs_info(ie_id, rs_index, name, rs_system_id, priority, total_rules)

integer ie_id; /*IN*/

integer rs_index; /*IN*/

char *name; /*OUT*/

integer *rs_sys_id; /*OUT*/

integer *priority; /*OUT*/

integer *total_rules; /*OUT*/

integer ie_pa_rs_index_by_sys_id(ie_id, rs_sys_id)

integer ie_id; /*IN*/

integer rs_sys_id; /*IN*/

integer ie_pa_rs_index_by_name(ie_id, name)

integer ie_id; /*IN*/

char *name; /*IN*/

Description

Function ie_pa_rs_size() returns the size of an EO's primary agenda.

Function ie_pa_rs_info() returns the rule set information for a particular primary agenda index.

Function ie_pa_rs_index_by_name() returns a rule set's primary agenda index. It does this by searching for a rule
set's name. This name is returned via ie_pa_rs_info(). A value of -1 indicates that the rule set is not in the primary
agenda.

Function ie_pa_rs_index_by_sys_id() returns a rule set's primary agenda index. It does this by searching for a rule
set's system id. This system id is returned via ie_pa_rs_info(). A value of -1 indicates that the rule set is not in the
primary agenda.

 System Functions

 146

Name

ie_watch() - interpreter inference engine watch flag value

Synopsis

integer ie_watch()

Description

Returns the value of the inference engine watch flag. If this value is zero, then the watch flag isn't set. A nonzero
value means that it is set. The inference engine flag is set by function watch(), and unset by function unwatch().

 System Functions

 147

Embeddable

This library is composed of functions for the purpose of embedding OPS-2000 within your application. For the most
part, functions in this library have identical counterparts appearing in the operating environment library.

Functions in this library can only be called from externally compiled code.

 System Functions

 148

Name

ops_agenda() - display agenda function

Synopsis

integer ops_agenda(path)

char *path;

Description

Function ops_agenda() displays a primary or local agenda. If path is NULL then it identical to agenda(), otherwise it
is

agenda(char *).

 System Functions

 149

Name

ops_assert_fact(), ops_assert_goal() - assert string value

Synopsis

integer ops_assert_fact(fact, certainty)

char *fact;

double certainty;

integer ops_assert_goal(goal, certainty)

char *goal;

double certainty;

Description

Function ops_assert_fact() asserts a string into the current expert object's FWM. The fact is asserted with the
certainty value specified by the certainty parameter.

Function ops_assert_goal() asserts a string into the current expert object's GWM. The goal is asserted with the
certainty value specified by the certainty parameter.

 System Functions

 150

Name

ops_clear() - clear an expert object or the entire system.

Synopsis

integer ops_clear(name)

char *name;

Description

If parameter name is NULL, this function efficiently clears the system of all user loaded definitions. This function does
not delete any generated symbol values. Function ops_terminate() used in conjunction with function ops_init() can
be used to restore the system's original state.

If parameter name is nonNULL, it is interpreted as an expert object name. The named expert object is cleared from
the system. A current expert object cannot be cleared.

Examples

Clearing the system of user loaded definitions.

 ...

 ops_clear();

 ...

Restoring the system to its original state.

 ...

 ops_terminate();

 ops_init();

 ...

 System Functions

 151

Name

ops_ce() - change working environment

Synopsis

integer ops_ce(path)

char *path;

Description

If path is NULL, then ops_ce() is identical to ce(), otherwise it is identical to ce(char *).

 System Functions

 152

Name

ops_declare() - feeds a string definition to the OPS-2000 compiler

Synopsis

int ops_declare(definition)

char *definition;

Description

This function enters a top level definition into the interpreter. There is no maximum definition length.

The interpreter function declare() is an interpreter interface to this function.

Examples

ops_declare("overload print, run, load;");

ops_declare("integer a, b, c;");

ops_declare("defrelation initial_fact () { }");

 System Functions

 153

Name

ops_def_fctn() - adds a compiled function to the C++ interpreter

Synopsis

int ops_def_fctn(ptr, fctn_prototype)

int (*ptr)();

char *fctn_prototype;

Description

This function is used to enter compiled functions into the C++ interpreter environment. The list given below
summarizes compiled functions.

1. Returns either a real, integer, char, or symbol value.

2. Pointer values cannot be explicitly returned.

3. Single dimensional arrays of the fundamental types can be passed.

4. Any returned symbol values are entered into the system's symbol table. Symbols are almost identical to string
constants, except the equality operators can be applied to them and they should never be explicitly destroyed.

Examples

ops_def_fctn(printf, "integer printf(string ...)");

ops_def_fctn(ops_declare, "integer declare(string) ");

 System Functions

 154

Name

ops_default_ie() - the system's default inference engine function

Synopsis

integer ops_default_ie(ie_id, steps)

int ie_id;

int steps;

Description

Function ops_default_ie() is the system's default inference engine function. This function should never be directly
called. This function should only be used in expert object ie declarations and with ops_def_fctn().

Examples

int user_fctns()

{

 ...

 ops_def_fctn(ops_default_ie, "int my_default_ie(int, int)");

 ie_default("int my_default_ie(int, int)");

 ...

} /*user_fctns*/

/*

 * Example

 */

defeo Example

{

 ie = int ops_default_ie(int, int);

 ...

} /*Example*/

 System Functions

 155

Name

ops_exec() - executing a command-line

Synopsis

integer ops_exec(command)

char *command;

Description

Function ops_exec() feeds a string of text to the command-line interpreter.

Examples

ops_exec("declare(\"int x;\"); x = 20; print(x + 20);");

ops_exec("printf(\"Hello World!\\n\"); ");

 System Functions

 156

Name

ops_facts(), ops_goals() - display working memories

Synopsis

integer ops_facts()

integer ops_goals()

Description

Function ops_facts() is identical to function facts().

Function ops_goals() is identical to function goals().

 System Functions

 157

Name

ops_free_form() - set's the free-form compiler flag.

Synopsis

int ops_free_form(mode)

int mode;

Description

This is the compiled version of free_form(). Its purpose is to set the compiler's free-form flag. If this flag is nonzero
then free-form facts and patterns are allowed (default). If this flag is set to zero then a warning message is generated
when a free-form fact or pattern is compiled.

 System Functions

 158

Name

ops_init() - initialize the OPS-2000 system

Synopsis

integer ops_init()

Description

This function is for initializing the OPS-2000 system. When embedding OPS-2000 within your system, it must be the
first OPS-2000 function call made. This function can only be called again if it is preceded by a call to function
ops_terminate().

 System Functions

 159

Name

ops_load() - loads a file of definitions

Synopsis

integer ops_load()

Description

Function ops_load() loads a file of OPS-2000 definitions into the system. If an error occurs, then all definitions
previously loaded will remain in the system. Consequently, in the event of an error during a load, the entire system
must be cleared using function ops_clear().

 System Functions

 160

Name

ops_open_dribble(), ops_close_dribble() - record system information

Synopsis

integer ops_open_dribble(file, append)

char *file;

integer append;

integer ops_close_dribble()

Description

Function ops_open_dribble() is identical to function open_dribble().

Function ops_close_dribble() is identical to function close_dribble().

Notes

What is written to the dribble file is version dependent. When using Microsoft Windows, all STDIO window output is
written to the dribble file. When using non-Microsoft Windows versions, only the output from OPS-2000 specific
functions is written to the dribble file. In particular this means that function printf() writes to Windows dribble files but
not to the other OPS-2000 versions dribble files.

 System Functions

 161

Name

ops_reset() - function for resetting expert objects

Synopsis

integer ops_reset(path)

integer *path;

Description

Function ops_reset() is for resetting expert objects. If the value of path is NULL, then it is identical to function reset(),
otherwise it is reset(char *).

 System Functions

 162

Name

ops_run(), ops_run_eo() - run expert objects

Synopsis

integer ops_run(steps)

integer steps;

integer ops_run_eo(eo, steps)

char *eo;

integer steps;

Description

Function ops_run() is identical to ops_run(integer).

Function ops_run_eo() is identical to function ops_run(char *, integer).

 System Functions

 163

Name

ops_send(), ops_receive() - send and receive EO messages.

Synopsis

integer ops_send(channel, mesg)

char *channel;

char *mesg;

integer ops_receive(channel, mesg, steps)

char *channel;

char *mesg;

integer steps;

Description

Function ops_send() sends a message to a channel declared using the defchannel declaration.

Function ops_receive() receives a message from a channel declared using the defchannel declarartion.

Notes

These functions should not be called either directly or indirectly from a running expert object.

 System Functions

 164

Name

ops_terminate() - terminates the OPS-2000 system

Synopsis

integer ops_terminate()

Description

This function deinitializes the OPS-2000 system. It returns the state of the system to that of before the previous
ops_init(). This function destroys all symbols created by the last instance of the system.

Function ops_init() can be called again to reinitialize the system.

Example

int main()

{

 int i;

 /* This loop will run the system 10 times. */

 for (i = 0; i < 10; i = i + 1) {

 ops_init();

 ... perform some actions ...

 ops_terminate();

 } /*for*/

} /*main*/

 System Functions

 165

Name

ops_watch(), ops_unwatch() - system monitoring functions

Synopsis

integer ops_watch(keyword)

char *keyword;

integer ops_unwatch(keyword)

char *keyword;

Description

Function ops_watch() is identical to function watch().

Function ops_unwatch() is identical to function unwatch().

 System Functions

 166

Math

Mathematical functions accessible from the interpreted and OPS-2000 compiled forms.

 System Functions

 167

Name

ops_rand(), ops_srand() - random number generation

Synopsis

int ops_rand(x)

int x;

void ops_srand(x)

int x;

Description

Function ops_rand() generates a random integer number in the range 0 to x - 1.

Function ops_srand() can be called at any time to reset the random number generator to a random starting point.
The generator is initially seeded with a value of 1.

 System Functions

 168

Name

exp(), log(), log10(), pow(), sqrt() - exponential, logarithm, power, square root functions.

Synopsis

double exp(x)

double x;

double log(x)

double x;

double log10(x)

double x;

double pow(x, y)

double x, y;

double sqrt(x)

double x;

Description

Function Description

exp() Returns e to the xth power.

log() Returns the natural logarithm of x.

The value of x must be positive.

log10() Returns the logarithm base ten of x.

The value of x must be positive.

pow() Returns x to yth power.

If x is zero, y must be positive.

If x is negative, y must be an integer.

sqrt() Returns the non-negative square root of x.

The value of x may not be negative.

 System Functions

 169

Name

floor(), ceil(), fmod(), fabs() - floor, ceiling, remainder, absolute value functions.

Synopsis

double floor(x)

double x;

double ceil(x)

double x;

double fmod(x, y)

double x;

double fabs(x)

double x;

Description

Function Description

floor() Returns the largest integer not greater than x.

ceil() Returns the smallest integer not less than x.

fmod() Returns the floating-point remainder of the division of x by y.

fabs() Returns the absolute value of x.

 System Functions

 170

Name

sin(), cos(), tan(), asin(), acos(), atan(), atan2() - trigonometric functions

Synopsis

double sin(x)

double x;

double cos(x)

double x;

double tan(x)

double x;

double asin(x)

double x;

double acos(x)

double x;

double atan(x)

double x;

double atan2(y, x)

double x, y;

Description

Functions sin(), cos(), and tan() return respectively the sine, cosine and tangent of their argument, x, measured in
radians.

Function Description

asin() Returns the arcsine of x in the range -PI/2 to PI/2

acos() Returns the arccosine of x in the range 0 to PI

atan() Returns the arctangent of x in the range -PI/2 to PI/2

atan2() Returns the arctangent of y/x, in the range PI to -PI, using the signs of
both arguments to determine the quadrant of the return value.

 System Functions

 171

Name

sinh(), cosh(), tanh() - hyperbolic functions

Synopsis

double sinh(x)

double x;

double cosh(x)

double x;

double tanh(x)

double x;

Description

Functions sinh(), cosh(), and tanh() return respectively the hyperbolic sine, cosine, and tangent of their argument.

