
- 1 -

THE PARALLEL PRODUCTION SYSTEM

BY

FRANK LOPEZ

B.S., Purdue University, 1986

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

in the Graduate College of the

University of Illinois at Urbana-Champaign, 1987

Urbana, Illinois

- 2 -

ACKNOWLEDGEMENTS

I would like to thank my advisor, Ralph Johnson,

for his patience, advice and continual support.

Also, I would like to thank America for

giving me this opportunity to follow my dreams.

- 3 -

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION ...5

1.1 PREVIOUS WORK .. 6

CHAPTER 2. EXPERT SYSTEMS ..7

CHAPTER 3. PRODUCTION SYSTEMS...9

3.1 DATA DRIVEN ... 9

3.2 GOAL DIRECTED .. 9

3.3 COMPONENTS OF A PRODUCTION SYSTEM... 10

3.3.1 Productions ... 10

3.3.2 Working Memory ... 11

3.3.3 Interpreter ... 11

CHAPTER 4. CURRENT PARALLEL ARCHITECTURES...13

CHAPTER 5. MATCH ...14

5.1 RETE ALGORITHM.. 14

5.2 PARALLELISM IN MATCH PHASE... 14

5.3 PPS MATCHING STRATEGY .. 15

CHAPTER 6. PPS MODEL ...17

6.1 DESIGN SUMMARY... 17

6.2 PPS SYSTEM ... 17

6.3 EXPERT OBJECTS ... 18

6.3.1 Abstract SIMD... 19

6.3.2 Expert Object definition ... 20

6.4 EXECUTION CYCLES .. 23

6.5 CONFLICT RESOLUTION ALGORITHMS .. 24

CHAPTER 7. SYSTEM MANAGER...25

7.1 COMPILE TIME ... 25

7.1.1 Granularities of Parallelism .. 25

7.1.2 Processor Resources.. 26

7.2 RUN TIME .. 27

- 4 -

CHAPTER 8. PATTERN MATCHING ALGORITHM..28

8.1 OPNET... 29

CHAPTER 9. IMPLEMENTATION NOTES..34

9.1 COMPILE TIME ... 34

9.2 MULTIMAX.. 35

CHAPTER 10. PPS PROTOTYPE SYNTAX..37

10.1 SYNTAX REVIEW ... 37

10.2 GRAMMAR... 37

10.3 SYNTAX NOTES ... 40

CHAPTER 11. REFERENCES ..41

- 5 -

Chapter 1. Introduction

The Parallel Production System (PPS) is a domain-independent, data-driven,

parallel production system developed at the University of Illinois. This system gives

users the capability to create modular expert systems on single or multiprocessor

architectures. The modules are defined as communicating knowledge sources called

Expert Objects. PPS's power comes from two primary sources. The first source is

PPS's ability to hide the actual physical architecture of the computer from the user, for

an application written in PPS is automatically adapted to the physical architecture of the

computer by the PPS System Manager. PPS has two natural parallelisms built into its

semantics: one at the Expert Object level, and the other at the rule set level. The

second source of power comes from the simple yet powerful PPS language. PPS

semantics gives the user the power to easily create any conceivable type of blackboard

structure (graph). A user can draw a graph of how the Expert Objects are to

communicate, and then easily specify the structure with PPS.

PPS was specifically designed to handle such problems as circuit synthesis that may

require propagating constraints through a complex system of objects. Since an Expert

Object in PPS can have one or more rules, it can be as simple as an AND-gate object in

a VLSI simulator, or as complex as a microprocessor object that simulates an iAPX286.

Some perceived applications for PPS include: circuit simulation, silicon compilers,

expert systems, and any application where a set of communicating intelligent objects

can be utilized as in the design of filters, switching networks, and systolic arrays. PPS

can also be used as an efficient OPS5 type production system by simple using only one

Expert Object. A prototype parallel version of PPS is currently running on an Encore

Multimax.

- 6 -

1.1 Previous work

The author's current work is an extension of his previous research at NASA: "CLIPS:

C Language's Integrated Production System." CLIPS was an attempt to create a

portable production system that didn't suffer from the draw backs of being written in

LISP. CLIPS has a full interface to the C programming language, and also takes care of

its own memory management. The language is a readable and usable production

system with capabilities approaching those of OPS5.

Some of the ideas used in PPS are extensions of previous research done by

Charles Forgy. This includes the Rete algorithm [7] and the parallelism of production

systems.[5,6] Other work that is similar to PPS includes YAPS [1], ORBS [4], and

(PS)2Mn [18].

- 7 -

Chapter 2. Expert Systems

Expert systems are computer programs that draw upon the organized expertise of

one or more human experts. Human experts tend to explain how they solve problems

using heuristics ("rules of thumb"). Therefore if a computer system could learn when to

use these same rules then it would be considered just as much an expert as any of the

human experts its knowledge came from. These rules abstractly have the form: "if

<something is true> then <perform some action>", and are called productions.

An expert system that is fabricated using a production system codes the heuristics of

an expert domain into productions. These rules are applied to the current state of the

decision making process. The input to the system consists mostly of data objects that

describe changes to the current state of the reasoning process. Once the system

knows which rules have their conditions satisfied, it has to decide which of these to

apply to the current state to generate the next state in the reasoning process. The

actions associated with the selected rule(s) are executed each time a rule is applied.

By coding an expert's knowledge into productions we are able to easily update and

modify any rules of the system. Furthermore, if the computer system gives a bad

response, or a response that could have been better, it becomes a relatively easy task

to locate the set of rules that lead to the incorrect decision. As can be seen by the

example PPS production given below, the heuristics the system uses have a declarative

and modular representation which lends itself to the normal way humans go about

solving problems.

(defrule save_baby_1 (declare (priority 99)

;if

 (the baby is crawling across the road)

 ;and

 (a Mack Truck is approaching it)

=> ;then

(assert (get the baby out of danger)))

- 8 -

This production could be a member of a set of productions that all dealt with

protecting a baby from potential dangers. By giving each rule a priority the system can

determine which rule has the most certainty of giving the correct decision.

A major problem of current expert system technology is dealing with the complexity

of large systems of rules that simultaneously interact on the same problem. PPS helps

deal with this complexity by adding another level of modularity to the problem solving

paradigm. PPS allows levels of abstraction in the construction of an expert system. In

PPS an expert system can be composed of many sub-experts that are all experts at

sub-problems of the overall problem. Each of these experts can then be subdivided,

and with each new subdivision of the complexity the system should become more

manageable.

A similar problem was encountered in the early days of computers when all

programming was done in assembly language. At that time it was difficult to write even

the most basic programs due to the enormous complexity associated with writing them

in a flat assembly language format. Higher level languages such as Fortran and Lisp

were built to make the programming of large problems easier. They did this by providing

mechanisms to partition the problem; PPS does the same for production systems.

- 9 -

Chapter 3. Production Systems

An expert system encoded as a production system is usually made up of three

parts: a set of productions held in production memory, a set of data objects (assertions)

held in working memory (blackboard/data memory/current state/knowledge base), and

an interpreter (inference engine). There are two primary types of productions systems:

data-driven (forward chaining) and goal-directed (backward chaining). Both types of

systems have many variations, including some systems that do both types of

inferencing.

3.1 Data Driven

A data-driven production system uses the contents of the knowledge base to

determine which productions can be executed. Therefore by having the knowledge base

describe the current state of some process, the productions can then infer new states

from the existing state. In an expert system these states describe the current state of

the reasoning process, and the state transitions represent the application of an expert's

expertise to the knowledge base. In reality we are taking a given situation and applying

the rules we know that pertain to it. Each time we apply a set of rules we come up with

a new state. Eventually we either draw some valid conclusions, or we determine that

the current state is based on incorrect assumptions and therefore is invalid. The

creation of multiple current states allows one to choose the best state at any given

instance of time, and thus stop the inferencing on any states that are known to be

wrong.

3.2 Goal Directed

A goal-directed production system backward-chains the inferencing process. This is

done by assuming that a goal is true and then attempting to reverse engineer the

application of the heuristics of the expert domain. If all the knowledge exists in the

- 10 -

system to support that a given asserted goal is true, then the goal becomes one of the

possible solutions of the system. This is a guessing algorithm since we guess what the

answer is (goal), and then attempt to prove that it is a valid solution. In reality this is

equivalent to saying: "this is what I think happened, now can it be supported?" By

backward chaining the new states with known data and rules we are able to rule out

states that cannot be supported by the knowledge base.

3.3 Components of a Production System

A production system has three main components: productions, working memory,

and an interpreter. The descriptions given here are of a data-driven production system,

since that is what PPS is.

3.3.1 Productions

The first component of a production system is the set of productions. A production is

a condition-action construct. Each production has a name, LHS (left hand

side/antecedent/condition) and a RHS (right hand side/consequent/action). The LHS is

the logical AND of the conditional elements of the production. There are two types of

condition elements usually found in the LHS of a production: tests and patterns. The

test condition is usually a test for constraints on the pattern conditions that have been

satisfied. A pattern condition is satisfied when it matches a data object found in the

working memory. Once each element of a rule's LHS is satisfied, the rule is said to be

"ready to fire". Each cycle of the production system's execution may produce one or

more rules which are in the "ready to fire" state. This set of satisfied rules is called the

conflict set, and the production system's conflict resolution algorithm determines which

elements of the conflict set will be fired. When a rule is fired its RHS is executed and it

is removed from the conflict set. This entire process is called the recognize-act cycle.

The production system first recognizes the rules that are in the conflict set, then uses

the conflict resolution algorithm to choose instantiations from the conflict set, and finally

executes the RHS's of the productions associated with the selected instantiations.

- 11 -

3.3.2 Working Memory

The Working Memory (WM) is a collection of data objects that represents the current

state of the system. A production system's working memory is like a classroom

blackboard. Each production watches the blackboard for new information. As new

information (data objects) streams onto the board, a production determines all of the

possible ways its LHS can be satisfied. For each possible way that the production's

LHS can be satisfied, an instantiation of the production is placed into the conflict set.

An instantiation is an ordered pair of a production and the working memory elements

that satisfied the production's LHS. An instantiation is removed from the conflict set

when it is fired, or if any of the working memory elements that created the instance no

longer exist. The initial state of the working memory is defined by the user, and is

modified using a production's RHS operators. Data objects are asserted into the

working memory using an assert operator, and are retracted from the working memory

using a retract operator.

3.3.3 Interpreter

The interpreter of a production system cycles through the recognize-act cycle. The

interpreter must first match the contents of the working memory to each rule's LHS. The

interpreter creates the conflict set by finding all of the productions that have become

instantiated from the current working memory. Once all of the matching has been done,

and a conflict set created, the interpreter uses the conflict resolution algorithm to

determine the set of instantiations that it will fire. Once these instantiations have been

fired, the interpreter repeats the cycle. System execution terminates when the conflict

set is empty after the match phase. This is true because only the RHS of an

instantiated production can modify the working memory.

- 12 -

Figure I: A Production System's Recognize-Act Cycle

Initial Working
Memory

Match Productions

to

Working Memory

Recognize

Conflict Set

Is Conflict Set Empty? Terminate Execution

Fire

Instantiations

Conflict Resolution

Algorithm

Conflict Set
Yes

C
on

fli
ct

 S
et

Instantiations to be fired

N
ew

 D
at

a
O

bj
ec

ts

- 13 -

Chapter 4. Current Parallel Architectures

Since the advent of the microprocessor, machine architectures with hundreds and

potentially thousands of Processing Elements (PEs) have reached the market. Current

researchers seem hard pressed to put all this new processing power to productive use.

PPS utilizes multiprocessor architectures to increase the execution speeds of

production system applications.

PPS simulates a particular abstract parallel architecture on whatever physical

architecture is available. An application written in PPS, for any computer, will work with

any other PPS compiler regardless of the underlying computer architecture. This

portability is created by having PPS always build an abstract parallel architecture that

models the true flow of system execution. One of the System Manager's tasks is to

allocate resources for the operation of this abstract parallel architecture.

This design may not fully utilize the physical architecture's potential power, but in this

day and age no software is even coming close to fully utilizing the power of every

parallel architecture. While some applications can be hand coded to use an

architecture, this is expensive and the applications tend to be limited and unportable.

PPS tries to naturally maximize the parallelism of an application. The user codes the

problem exactly as it is seen, and PPS does its best to utilize all of the inherent

parallelism in the user defined system. Consequently, savings in software development

costs should be recognized, and at the same time parallelism will be exploited.

Many papers have been written that have shown where potential parallelism exists

in production systems, but nobody seems to have written a production system language

that takes advantage of these natural parallelisms. PPS was specifically designed to

take advantage of the inherent parallelism found in production systems, in addition to

any inherent parallelism of the applications written in the language.

- 14 -

Chapter 5. Match

The most expensive part of a production system's execution-cycle tends to be the

match phase. It is estimated that some production systems spend more than ninety

percent of their total run-time in this phase [7]. This problem can easily be recognized

since every pattern condition of the LHS of a rule has to be matched to the contents of

the working memory. If the working memory has many data objects and the system has

many productions, then the amount of time that could foreseeably be spent would be

equal to that of matching every pattern condition to every data object on each

execution-cycle. However, PPS uses an efficient pattern matching algorithm that trades

memory for faster execution speeds.

5.1 Rete Algorithm

The PPS pattern matching algorithm was derived from the Rete Algorithm [7]. This

efficient pattern matching algorithm will only once match a pattern condition to a data

object for the entire life-span of the data object. A data object is compared to every

pattern only when it is first placed in the working memory. This is accomplished by

saving previous match information in a logical net that represents the LHS of a rule.

More about how this works is left for chapter eight.

5.2 Parallelism in Match Phase

Pattern matching is only a small piece of the match phase. In addition, interpattern

variable bindings have to be unified, and test element conditions have to be checked.

All of these things are associated with successful matches, but are not directly

associated with the actual pattern matching. In the Rete algorithm these steps can take

up a large percentage of the match time, and worst, the time cannot be predicted since

the number of new data objects that will match a particular pattern cannot be predicted

by the system. Fortunately the Rete algorithm is setup so that this nonpattern-matching

- 15 -

work can be partitioned with the patterns, and therefore the entire matching phase can

be done in parallel. The list of patterns with the information to perform the nonpattern-

matching work is called the pattern-list. Each production has its own pattern-list.

Furthermore, pattern-lists are closed under concatenation. Initially all of the Expert

Object's rules have their pattern-lists concatenated into a single pattern-list.

The matching process contains three ingredients: new data objects, processors, and

the patterns to be matched. There are two primary ways of using parallelism for match

algorithms.

The first parallel match algorithm assigns a single processor to match each new data

object against the entire pattern-list. This algorithm would appear to be efficient if the

average number of new data objects, on each recognize-act cycle, is equal to that of the

number of processors available for matching. A disadvantage is that there may be a

large percentage of idle processors if the average number of new data objects is much

less than the number of available processors.

The second parallel match algorithm assumes that the pattern-list is partitioned

according to each processor's capability. Since each of these partitions are in fact

system defined rule sets, they cannot be created within the pattern-list of a rule's LHS.

This algorithm sends new data objects in parallel to each partition's input buffer, and

then each processor matches each data object to its pattern-list partition. If this

partitioning is done judiciously then a high degree of parallelism can be utilized in each

Expert Object, for each of an Expert Object's rules can be run on its own processor. A

disadvantage is that it is difficult to create proportionately equal pattern-list partitions.

5.3 PPS Matching Strategy

PPS uses both types of algorithms. The patterns are partitioned into approximately

equal sets. Each processor is assigned a pattern-list partition and a data-object input

buffer. Each time a new data object arrives it is sent in parallel to each partition's input

buffer for matching. Once a processor matches all of the data objects in the partition's

input buffer, it then checks to see if any other processors still have data objects to be

- 16 -

matched. If one is found then the processor grabs a data object from that processor's

input buffer and starts matching in parallel with any other processors that are currently

working on the partition. We can have the best of both algorithms by making sure that

this teaming of processors on a partition is done judiciously.

This can be accomplished by having a floating pool of the processors that have

finished processing their partitions. Each processor in this pool is then assigned a data

object from a currently running processor's input buffer. A proper assignment should

consider any performance improvements that would be derived from the assignment.

For instance if too many processors are working on a partition then they may spend

most of their time waiting for each other in the partition's critical sections. Also the

partition with the most data objects in its input buffer should be assigned processors

before any partition with a lesser amount of data objects in its input buffer.

Each pattern-list partition represents a system defined rule set called a partition set.

The current pattern-list partitioning algorithm partitions using only rule units. A rule unit

is defined as the set of patterns that appear within any rule's LHS. This means that the

patterns in a rule's LHS must all appear in the same partition. However, if the partitions

are being stored in shared memory then the partition sets will have a pattern unit

instead of a rule unit.

A pattern unit means that multiple processors can have exclusive disjoint sets of

patterns from a rule's LHS. If shared memory is used then the rule would appear in

each of its pattern's partition sets. However, a particular instantiation of the rule would

only appear in the conflict set of the partition set that first recognized it. Therefore at

any given instance of time a rule can have instantiations appearing in many different

conflict sets. Thus the conflict sets of the partition sets are disjoint.

- 17 -

Chapter 6. PPS Model

6.1 Design Summary

PPS is a parallel production system that was designed to take advantage of any

parallelism in production systems and their applications. There are four main aspects to

the PPS model:

1) A PPS System is a collection of communicating Expert Objects. The system

executes using a synchronous communication protocol.

2) An Expert Object is a standard data-driven production system with the added

capability of being able to communicate with other Expert Objects in the PPS

system.

3) An Expert Object is implemented as an "abstract SIMD" machine.

4) The System Manager is responsible for the allocation and maintenance of resources

for the PPS system. It takes care of any machine dependent features of the PPS

model.

6.2 PPS System

An expert system written in PPS is a set of communicating Expert Objects. Each

expert object has its own working memory and rule set(s). An Expert Object cannot be

directly modified by another Expert Object. Any communication between expert objects

must be done through communication channels created by the system. At compile-time

a unidirectional virtual connection is created between two Expert Objects if the System

Manager determines that one Expert Object needs to send messages to the other

Expert Object. This need is determined by a compile-time analysis of the right hand

sides of all of the rules for each Expert Object.

- 18 -

All of the Expert Objects synchronously send and receive messages. An Expert

Object cannot execute until it has received some type of message from each of its input

ports. Consequently each Expert Object will always send some type of a message to all

of its output ports for each recognize-act cycle. A nonempty message is always the

direct result of the execution of the RHS of a rule. A message does not affect the

behavior of an Expert Object until the Expert Object retrieves the message from its input

port. The messages that can be sent between Expert Objects are:

a) assert - assert a data object into the working memory of an Expert Object.

b) retract - retract a data object from the working memory of an Expert Object.

c) stop - stop the execution of the Expert Object.

6.3 Expert Objects

Abstractly each Expert Object (EO) is a knowledge source in the expert system.

The EOs communicate through communication channels established by the system. An

EO is composed of one or more user defined rule sets.

Rule sets help deal with the complexity of building expert systems. Partitioning rules

into rule sets should make the expert system easier to maintain and read. A rule set

prevents name conflicts with rules that appear within different rule sets in the same EO.

Thus the same rule name can be used multiple times within an EO.

- 19 -

Figure II: Creation of an Expert Object's partition sets

Each Expert Object has its own set of partition sets that are derived at compile-time

from its user defined rule sets. This partitioning is done by the pattern-list partitioning

algorithm. The union of an Expert Object's user defined rule sets is fed as input to the

pattern-list partitioning algorithm. The output from this algorithm is the Expert Object's

partition sets (PS) used by the System Manager to transform the Expert Object into an

"abstract SIMD" machine.

6.3.1 Abstract SIMD

Single instruction stream-multiple data stream (SIMD) architectures correspond to

the array processor class in which there are multiple processing elements that are

supervised by the same control unit. "All PEs receive the same instruction broadcast

from the control unit but operate on different data sets from distinct data streams."[13]

The term "abstract SIMD" means that the single instructions are not hardware

instructions, but rather instructions from the EO's inference engine to its partition sets

Expert Object

RS-1
RS-n

n >= 1

Pattern-List Partitioning

input

output

PS-1
PS-m

m >= 1

...

...

- 20 -

during the recognize-act cycle. The multiple data streams are created by giving each

partition set a unique input data buffer (input data set) that is connected to the control

processor via a unique communication channel (data stream). The "abstract SIMD"

machine is created and defined by the System Manager at compile-time.

The "abstract SIMD" machine has a control unit (processor) and a set of array

processors. The machine's array processors correspond to the Expert Object's partition

sets, and the control processor handles the Expert Object's control related features.

There are two primary purposes for having a control processor for the partition sets.

The first purpose is to interface the partition sets to the PPS system, and the second

purpose is to serve as the control inference mechanism for the Expert Object. This

strategy was used because it increases the parallelism and modularity of the system,

but reduces the system's communication needs.

The primary goal for using an "abstract SIMD" architecture was to make the partition

sets independent of one another, yet working as a team on the same problem with the

control processor as the team's manager. This was accomplished by giving each

partition set a copy of the working memory, a local agenda, and a conflict resolution

algorithm. The control processor keeps all of the partition sets working in

synchronization, and is solely responsible for all communication to and from a partition

set.

6.3.2 Expert Object definition

Each EO is composed of five parts:

1) communication channels - These include connections between the

communicating EOs, in addition to the connections created for the Expert

Object's "abstract SIMD" machine.

2) distributed agenda - The agenda is the order in which the current conflict set is to

be executed. The Expert Object's agenda is distributed throughout its partition

sets and is obtained, when needed, by polling the partition sets.

- 21 -

3) working memory - The working memory contains the current data objects of the

EO's knowledge base.

4) pattern-list partitions - These partitions are created by the pattern-list partitioning

algorithm for the array processors of the "abstract SIMD" machine.

5) inference engine - The control mechanism for the recognize-act cycle.

Each partition set is composed four parts:

1) A local copy of its Expert Object's working memory.

2) A local pattern-list that is the concatenation of each pattern-list of each of the

partition set's rules.

3) A local agenda that contains the results of applying the partition set's conflict

resolution algorithm on the partition's conflict set.

4) Two communication ports (in, out) for communication with the Expert Object's

control processor.

An EO and its partition sets all have their own message processing centers. These

centers control all of the input and output from the respective type of object. The

processing of messages is one of the main functions of the EO control processor, since

messages are used to keep the PPS system synchronized. The partition set's message

processing center is used to control the flow of data to and from the PPS pattern

matching algorithm that processes the local pattern-list partition.

An EO's control processor has no state information. All of the state information,

including the EO's agenda, is stored in its partition sets. Any message sent to a control

processor is forwarded to its partition sets. The only type of message that the control

processor actually processes is the stop message.

At any time an Expert Object can stop its own processing by sending itself a stop

message. A stop message will properly close all of the communication channels that

- 22 -

are connected to the Expert Object. However, an EO can only stop itself after it has

stopped all of its partition sets.

Figure III: A PPS Expert Object

Figure III is an example of an Expert Object. In this example, the System Manager

has determined that EO-i and EO-m both have the capability to send messages to the

Expert Object, and that the Expert Object has the capability to send messages to EO-i.

The Expert Object has communication channels to and from each of its partition sets.

EO-i EO-m

connected set

interface to
Expert Objects

interface to
local partition sets

Expert Object
Control Processor

PS-1
PS-n

n >= 1

partition sets

- 23 -

6.4 Execution Cycles

When execution begins, the Expert Object initializes its working memory with the

user defined data objects. An Expert Object has six steps to its execution cycle:

1) Poll each of the partition sets for conflict resolution information (instantiations).

2) Perform the EO's conflict resolution algorithm on the conflict set sent by the

partition sets.

3) Based on the output of the conflict resolution algorithm, instruct the appropriate

partition set(s) to fire the rule at the front of their agenda(s).

4) Accept any messages from the partition set(s) whose instantiations were

executed in step three. These messages will be processed and forwarded to the

addressed EOs. If an EO receives a message from its partition sets that is

addressed to itself, then the EO sends the message in parallel to all of its

partition sets. If the EO receives a stop message from one of its partition sets

then it will send the message to all of its partition sets and then stop itself.

5) Send a message to all its output ports that indicates that the Expert Object has

finished its execution cycle. This final message makes sure that every EO that is

connected to it via an output port will receive a (possibly empty) message from

the EO. This will ensure that each EO knows when to stop waiting and thus

prevent deadlock.

6) Accept the messages from all of the EOs that have output ports connected to it.

Send any nonempty messages to the partition sets.

The partition set's execution cycle has five steps:

1) Read input messages from the EO.

2) Perform the action specified by the message type (assert/retract/stop). A stop

message terminates execution of the partition set.

- 24 -

3) If the EO control processor requests the instantiation at the front of the agenda

and the agenda is empty, then send a no_agenda message. If the agenda is not

empty then send a message that contains the appropriate information.

4) Wait for the Expert Objects to decide which, if any, local instantiations should be

fired.

5) If instructed to fire then execute the rule's RHS and send any messages

produced by its execution to the EO control processor.

6.5 Conflict Resolution Algorithms

The PPS interpreter generates a conflict set in the recognize phase of the recognize-

act cycle. The PPS conflict resolution algorithm determines which elements of the

conflict set, if any, are to be executed. This is a distributed conflict resolution algorithm

since each partition set performs a conflict resolution algorithm on its own conflict set.

Another conflict resolution algorithm is performed by the Expert Object on the

information it receives from its partition sets.

A partition set's conflict resolution algorithm orders instantiations by sorting them

based on their time stamp, their rule set's priority number, and their production's priority

number. The conflict set is sorted first by the priority of the rule's rule-set, and then by

the rule's priority, and lastly using the instantiation's time stamp.

In the current PPS system the Expert Object's conflict resolution algorithm is

identical to the partition set algorithm. The Expert Object polls each partition set for the

portions of its distributed agenda that it needs to determine which rules are to be fired.

In future versions of PPS the Expert Object's conflict resolution algorithm may differ

from that of the partition sets.

- 25 -

Chapter 7. System Manager

The System Manager is all of the PPS software that is machine dependent. PPS

can be ported to a new machine (that has a C compiler) by rewriting the System

Manager. Regardless of the type of architecture PPS is ported to, the System Manager

should always be transparent to the user's application. Consequently, applications do

not have to be modified when they are ported from one machine to the next. There are

two phases to the System manager: compile-time and run-time.

7.1 Compile time

At compile-time the System Manager determines the appropriate degree of

parallelism to use. This decision is directly related to the resources available to it, for the

"abstract SIMD" machines are created so that they utilize all of the available processors.

The System Manager distributes its processors in three steps.

1) Determine the total number of processors available.

2) If the total number of processors is greater than or equal to the number of Expert

Objects then allocate one processor to each Expert Object. Otherwise evenly

distribute the Expert Objects to the processors. A processor assigned several

EOs will time-share between them.

3) Allocate any remaining processors to the Expert Objects using the pattern-list

partitioning algorithm.

7.1.1 Granularities of Parallelism

There are three granularities of parallelism that PPS can exploit: large, medium, and

small. The granularities are applied from largest to smallest.

- 26 -

The largest granularity is the use of multiple Expert Objects. Here each Expert

Object can be assigned its own processor.

Medium sized granularity involves the automatic partitioning of the user defined rule

sets into proportionately equal partition sets. This involves the creation of an "abstract

SIMD" machine for each Expert Object. The smallest medium granularity is when each

partition set has only one rule unit.

Small granularity is when there are multiple processors assigned to each partition

set. Here the processors work in parallel on the same partition. This involves the

creation of a processor pool for any idle processors.

7.1.2 Processor Resources

The following variables are used in further definitions.

Let N be the total number of rules in the system.

Let M be the total number of Expert Objects in the system.

Let P be the total number of processors available to PPS.

Let T by the total number of patterns in the system.

The maximum number of processors that the combined large and medium

granularity can use is equal to N + M. This figure is derived by creating an SIMD

machine for each Expert Object that has one control processor, and one processor for

each rule of the Expert Object. The minimum number of processors that can be used is

one. Furthermore, when P < M + N a concurrent programming scheme inspired by

ORBS (Oregon's Rule Based System)[4] will automatically be used.

If P > M + N then the smallest granularity of parallelism can be exploited. This

involves using multiple PEs for the Rete algorithm used for matching the working

memory to each partition's pattern-list.

- 27 -

At least T + M processors can be utilized if all three granularities of parallelism are

used. Furthermore, if an algorithm could be derived that would allow multiple

processors to work together on matching a single data object to a single pattern then

the maximum number of processors used would be much greater.

7.2 Run time

The run-time implementation depends upon support available from the operating

system. If the operating system has the basic features that PPS needs, then the run-

time implementation will be very simple. If the operating system is very primitive or

doesn't exist, then the System Manager will look more like an operating system. The

current run-time tasks are: establish and maintain communication channels in the

system, and provide any capabilities that the abstract parallel architecture needs to

execute synchronously. Future tasks may include processor fault tolerance, the

dynamic creation of Expert Objects, and the ability for the system to fine tune its

execution at run-time.

- 28 -

Chapter 8. Pattern Matching Algorithm

The PPS pattern matching algorithm was derived from the Rete algorithm. The PPS

compiler compiles each production's LHS into a dataflow structure which in PPS is

called the OPNET (OPerator NETwork). The OPNET is the internal representation of a

production's pattern-list. One OPNET is created for each partition set.

The OPNET is created by linking all of a production's patterns together into a binary

tree network. The leaves of the binary tree network are the compiled patterns. A

pattern will appear only once in a given OPNET. The internal nodes of the tree network

are two-input AND nodes that represent the merge of a pattern with all of the patterns

that appeared before it in the LHS of a production. Since one pattern can be included in

several productions, a leaf can have several parents. An OPNET has one root node for

each of its productions. A root node is called a terminator node.

At run-time a token is created each time a pattern is successfully matched to a data

object. Two types of information may be found in this token: variable bindings, and the

names of all of the data objects that matched the patterns that the token represents.

This token is fed into the OPNET, and will flow as long as it can be merged (unified

interpattern bindings) with a token from the opposite input. If a token flows into the

terminator node it means that the production whose name is associated with the

terminator node is ready to fire. When this occurs an instantiation pair (production,

token) is added to the conflict set.

- 29 -

8.1 OPNET

Below we give an example of a partition set with two productions. The OPNET that

represents their left hand sides is given in figure IV.

(defrule rule-one (defrule rule-two

 (input ?x ?y) (?x ?y ?z)

 (?x is numeric) (input ?x ?z)

 (test (?x > ?y)) (test (?x > ?z))

 (?x ?y ?z) =>

 => RHS)

 RHS)

In this text the token format is <data object's WM id (,variable binding name =

value)*>, and the WM format is <data object's WM id > <data object>.

- 30 -

Figure IV: Initial OPNET for rule-one and rule-two

Table I: Working Memory matches

Working Memory:

 <1> <input 60 20> - matches <input ?x ?y>(T1) and <input ?x ?z>(T2)

 <2> <input 30 20> - matches <input ?x ?y>(T3) and <input ?x ?z>(T4)

 <3> <30 is numeric> - matches <?x is numeric>(T5)

 <4> <one two three> - matches <?x ?y ?z>(T6)

 <5> <30 20 10> - matches <?x ?y ?z>(T7)

 <6> <60 40 20> - matches <?x ?y ?z>(T8)

input ?x ?y ?x is numeric ?x ?y ?z input ?x ?z

and node

(?x > ?y)

terminator
rule one

and node

and node

(?y > ?z)

terminator
rule two

- 31 -

In figure V the working memory in table I has been matched to the OPNET in figure

IV. In this example the working memory has six data objects. Each of these data

objects is pattern matched to each pattern in the OPNET. A token is created each time

a data object successfully matches a pattern. A token remains in an AND node's input

buffer until one of the data objects that created it is removed from the working memory

by the retract operator.

The matches given in table I represent all of the possible matches of the given WM

to the given set of patterns. The token that was produced by the match is indicated in

parenthesis after the respective match. A list of all of the tokens produced directly from

the matching phase is given in table II. However, more tokens are created when some

of the existing tokens are successfully merged at the OPNET's AND nodes. This AND

node merging is called interpattern unification. The results of the interpattern unification

are given in figure VI and are summarized in table III.

Whenever a new token is created, it flows to the parent AND node. The AND node

attempts to merge the new token with each existing token from the opposite side of the

node. Every token that is successfully created from this merging process is sent to the

next parent node in the OPNET. When a terminator node receives a token, the token

and the terminator's production object will together be placed into the conflict set.

Above we see that T9 was created from T3 and T5, T11 was created from T9 and T7,

and T10 was created from T2 and T7. It is easily seen that no other tokens are

produced by the AND nodes.

Instantiations of "rule one" and of "rule two" were created when T11 and T10 flowed

into their terminator nodes. If the WM only contained the given six data objects, then

these two productions would be the conflict set. The conflict resolution algorithm

decides which members of this conflict set are to be fired. The conflict set is checked

again only after all of the selected instantiations have been executed. Only new

additions or deletions to the WM have to be propagated through the system since all of

the old state information is stored at each of the AND nodes.

- 32 -

Figure V: Result of matching the WM to the OPNET's patterns

Table II: Tokens created from WM matches

 Tokens:

 T1: <1, ?x=60, ?y=20> T5: <3, ?x=30>

 T2: <1, ?x=60, ?z=20> T6: <4, ?x=one, ?y=two, ?z=three>

 T3: <2, ?x=30, ?y=20> T7: <5, ?x=30, ?y=20, ?z=10>

 T4: <2, ?x=30, ?z=20> T8: <6, ?x=60, ?y=40, ?z=20>

input ?x ?y ?x is numeric ?x ?y ?z input ?x ?z

and node

(?x > ?y)

terminator
rule one

and node

and node

(?y > ?z)

terminator
rule two

T3

T1 T5

T6

T7

T8

T8

T7

T6 T2

T4

- 33 -

Figure VI: Result of interpattern unification

Table III: OPNET tokens after interpattern unification

 Tokens:

 T1: <1, ?x=60, ?y=20> T7: <5, ?x=30, ?y=20, ?z=10>

 T2: <1, ?x=60, ?z=20> T8: <6, ?x=60, ?y=40, ?z=20>

 T3: <2, ?x=30, ?y=20> T9: <2:3, ?x=30, ?y=20>

 T4: <2, ?x=30, ?z=20> T10:<1:6, ?x=60, ?y=40, ?z=20>

 T5: <3, ?x=30> T11: <2:3:5, ?x=30, ?y=20, ?z=10>

 T6: <4, ?x=one, ?y=two, ?z=three>

input ?x ?y ?x is numeric ?x ?y ?z input ?x ?z

and node

(?x > ?y)

terminator
rule one

and node

and node

(?y > ?z)

terminator
rule two

T3

T1 T5

T6

T7

T8

T8

T7

T6 T2

T4

T9

T11

T10

- 34 -

Chapter 9. Implementation Notes

9.1 Compile time

At compile-time a number of things are done to set up the system. These are:

1) Analyze the Expert Objects to determine for each Expert Object:

a) The set of Expert Objects that it can receive messages from. In the

current implementation a system mailbox is created for each member

of this set. The addresses of these mailboxes are mapped to their

potential senders so that each sender is given a unique address to

send to.

b) The set of Expert Objects that it can send messages to. Each member

of this set is assigned a mailbox address after all of the objects in the

system have been created.

2) Partition the pattern-list and determine the extent to which each of the three

granularities of parallelism can be used. Proceed from largest to smallest and

always first try to maximize the larger granularity before using a smaller

granularity.

Each data object is issued a unique identification number. Each Expert Object

assigns consecutive integers to the data objects that it creates. The concatenation of

this number and the Expert Object's identification number is the data object's unique

system wide identification number.

- 35 -

9.2 Multimax

The first PPS prototype was built on an Encore Multimax. Its main purpose is to

show that the PPS design is correct, which it has successfully accomplished.

The Multimax environment allows one to define how many processors are needed

(processes; task_init), and then provides mechanisms to start tasks on the processors

(tasks, task_start). All tasks share the same address space.

PPS currently starts one process for each Expert Object and partition set. A PPS

system processor is then created by running a system defined task with each of the

processes. There are two types of tasks that are started: expert objects and partition

sets. Each type is started with a structure that specifies its local memory and I/O ports.

These structures are created by the System Manager from the parser's output. A

barrier is used to start up the whole system in synchronization.

Execution begins when the barrier is released (tasks start execution), and ends

only after each task in the system has stopped itself. An Expert Object that has stopped

execution cannot be restarted. In addition the prototype will not allow any new Expert

Objects to be added to the system after the barrier is released.

The scanner tends to be the most reused piece of code in the system. It is used

both at compile-time and during execution. Messages in the system are currently sent

using character strings. Any data objects sent to a mailbox must be reparsed by the

receiver into a data object format. This requires a scanner with two modes, fetching

characters from an input file, and fetching characters from an input string. Regardless

of the mode, the behavior of the scanner is identical. An end-of-file token is returned for

end-of-string and end-of-file. Inside the scanner the only difference is that the

character-fetch function gets the next character from the input string unless there is a

currently opened file.

- 36 -

The Multimax PPS system uses a single address space. Some local optimizations

that take advantage of this addressing include: string comparisons are done by

comparing addresses (use of a hash table), and mailboxes are addressed by their

structure's memory address.

A disadvantage of the single address space is that static and global variables have

to be properly accessed by any tasks that are running in parallel. In some cases this

required the use of critical sections, and in the other cases the variables were packaged

into structures that were passed to the functions that used them. For example the

scanner is passed a structure that contains a place for the new token and the current

input processing state. This was done because the scanner is used in such tasks as

message processing and the creation of new data objects; all of which can occur in

parallel.

- 37 -

Chapter 10. PPS Prototype Syntax

10.1 Syntax Review

The current PPS syntax has four main constructs:

1) defeo - The definition of an Expert Object.

2) deffacts - The initial definition of an Expert Object's working memory.

3) defrs - The definition of a rule set.

4) defrule - The definition of a rule (production).

The deffacts and defrs constructs are nested within the defeo constructs, and the

defrule construct is nested within the defrs construct. The defeo construct cannot be

nested within any type of construct.

10.2 Grammar

A Left-Recursive Context-Free Grammar for PPS is:

<pps system> ::= <defeo_lst>

<defeo_lst> ::= <defeo_lst> <defeo> | <defeo>

<defeo> ::= (defeo <name> <eo_stmt>)

<eo_stmt> ::= <eo_stmt> <eo_opt> | <eo_opt>

<eo_opt> ::= <defrs> | <deffacts>

<defrs> ::= (defrs <name> (declare (priority <integer>)) <defrule_lst>) |

(defrs <name> <defrule_lst>)

- 38 -

<defrule_lst> ::= <defrule_lst> <defrule> | <defrule>

<defrule> ::= (defrule <word> (declare (priority <integer>))

<condition_lst> <then> <action_lst>) |

(defrule <word> <condition_lst> <then> <action_lst>)

<condition_lst> ::= <condition_lst> <condition element> |

<condition element>

<condition element> ::= <pattern condition element> |

<test condition element>

<pattern condition element> ::= (<clause>) |

<variable> <binder> (<clause>)

<test condition element> ::= ∈

<action_lst> ::= <action_lst> <action> | <action>

<action> ::= <assert> | <retract> | <printout> | <stop>

<retract> ::= (retract (<variable_lst>)) |

(retract (<variable_lst>) <sender> <receivers>)

<assert> ::= (assert (<clause>)) |

(assert (<clause>) <sender> <receivers>)

<printout> ::= (printout (<clause>))

<stop> ::= (stop)

<receivers> ::= <receivers> , <word> | <word>

<deffacts> ::= (deffacts <name> <fact_lst>)

<fact_lst> ::= <fact_lst> <fact> | <fact>

<fact> ::= (<literal_lst>)

- 39 -

<clause> ::= <clause> <element> | <element>

<element> ::= <variable> | <literal>

<variable_lst> ::= <variable_lst> <variable> | <variable>

<variable> ::= ?<word>

<literal_lst> ::= <literal_lst> <literal>

<literal> ::= <word> | <float>

<float> ::= <integer> | <integer>. | <integer>.<integer> |

 .<integer> | <integer>.<integer><exp>

<exp> ::= e <integer> | E <integer>

<integer> ::= <integer header> <digit_lst> | <digit>

<integer header> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<digit_lst> ::= <digit_lst> <digit> | <digit>

<digit> ::= 0 | <integer header>

<word> ::= <word header> <string> | <word header>

<word header> ::= [a-z] | [A-Z]

<string> ::= <string><char> | <char>

<char> ::= <word header> | "_" | "-" | [0-9]

<then> ::= "=>"

<binder> ::= "<-"

<sender> ::= "->"

- 40 -

10.3 Syntax Notes

The "declare" clause is used to specify an attribute of a construct. It is currently only

being used to declare the priority of the rules and of the rule sets.

The constants <integer> and <float> are identical to their counterparts in C. If you

ever have problems with these constants then it might help to determine your C

compiler's definition of these constants since they are identical to PPS's interpretation.

The <receivers> field in <assert> and <retract> is used to specify what Expert

Objects in the system you want these messages sent to.

Comments may be used by specifying a ";" anywhere in the body of the code.

Anything that appears between the ";" and the end of the line will be ignored.

- 41 -

Chapter 11. REFERENCES

[1] Allen, E., "YAPS: A Production Rule System Meets Objects", Proc. of AAAI,

August, 1983.

[2] Clinger, W.D., "Foundations of Actor Semantics", Ph.D Dissertation, MIT, 1981.

[3] de Kleer, J., and Sussman, G.J., "Propagation of Constraints Applied to Circuit

Synthesis", MIT AI Lab Memo 485, September, 1978.

[4] Fickas, S., "Design Issues in a Rule-Based System", ACM SIGPLAN Notices, 20,

1985.

[5] Forgy, Charles, L., "A Production System Monitor for Parallel Computers", CMU

SDL-395, April, 1977.

[6] Forgy, Charles, L., "On the Efficient Implementation of Production Systems", CMU

SDL-425, 1979.

[7] Forgy, Charles, L., "Rete: A Fast Algorithm for the Many Pattern/Many Object

Pattern Match Problem", Artificial Intelligence, 19, 1982.

[8] Forgy, Charles, L., McDermott, J., "OPS, A Domain-Independent Production

System Language", Proc. of the 6th IJCAI, August, 1979.

[9] Georgeff, M.P., "A Framework for Control in Production Systems", Proc. of the 6th

IJCAI, August, 1979.

[10] Gu, J., and Smith K.F., "KD2: An Intelligent Circuit Module Generator", IEEE-DA,

1986.

[11] Hewitt, C., Baker, H., "Actors and Continuous Functionals", MIT AI Lab Memo

436A, July, 1977.

- 42 -

[12] Hewitt, C., Lieberman, H., "Design Issues in Parallel Architectures for Artificial

Intelligence", MIT AI Lab Memo 750, November, 1983.

[13] Hwang, K., Briggs, F.A., Computer Architecture and Parallel Processing, McGraw-

Hill Book Company, 1984.

[14] Lenat, D.B., McDermott, J., "Less than General Production System Architectures",

Proc. of the 5th IJCAI, August, 1977.

[15] McDermott, J., Forgy, C., "Production System Conflict Resolution Strategies",

CMU SDL-392, December, 1976.

[16] Mizoguchi, R., Kakusho, O., "Hierarchical Production System", Proc. of the 6th

IJCAI, August, 1979.

[17] Siegel, H.J., Schwederski, T., Davis, N.J., Kuehn, J.T. "PASM: A Reconfigurable

Parallel System for Image Processing", Proceedings of the Workshop on

Algorithm-guided Parallel Architectures for Automatic Target Recognition, July,

1984.

[18] Uhr, L.M., "Parallel-Serial Production Systems", Proc. of the 6th IJCAI, August,

1979.

[19] Waterman, D.A., "Adaptive Production Systems", CMU Working Paper 285,

December, 1974.

	The Parallel Production System
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Expert Systems
	Chapter 3. Production Systems
	Chapter 4. Current Parallel Architectures
	Chapter 5. Match
	Chapter 6. PPS Model
	Chapter 7. System Manager
	Chapter 8. Pattern Matching Algorithm
	Chapter 9. Implementation Notes
	Chapter 10. PPS Prototype Syntax

